login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052780
Expansion of e.g.f. x^2*exp(4*x).
2
0, 0, 2, 24, 192, 1280, 7680, 43008, 229376, 1179648, 5898240, 28835840, 138412032, 654311424, 3053453312, 14092861440, 64424509440, 292057776128, 1314259992576, 5875515260928, 26113401159680
OFFSET
0,3
COMMENTS
Old name was: A simple grammar.
FORMULA
E.g.f.: x^2*exp(x)^4.
a(n) = 2*A038845(n-2).
Recurrence: a(1)=0, a(2)=2, (n-1)*a(n+1) - 4*(n+1)*a(n) = 0.
From Ralf Stephan, Mar 26 2003: (Start)
a(n) = n*(n-1)*4^(n-2).
G.f.: 2*x^2/(1-4*x)^3. (End)
MAPLE
spec := [S, {B=Set(Z), S=Prod(Z, Z, B, B, B, B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
seq(n*(n-1)*4^(n-2), n=0..20); # Zerinvary Lajos, Apr 25 2007
MATHEMATICA
Table[4^(n-2)*n*(n-1), {n, 0, 30}] (* G. C. Greubel, Jul 20 2019 *)
With[{nn=20}, CoefficientList[Series[x^2 Exp[4x], {x, 0, nn}], x] Range[0, nn]!] (* or *) LinearRecurrence[{12, -48, 64}, {0, 0, 2}, 30] (* Harvey P. Dale, Sep 28 2022 *)
PROG
(PARI) vector(30, n, n--; 4^(n-2)*n*(n-1)) \\ G. C. Greubel, Jul 20 2019
(Magma) [4^(n-2)*n*(n-1): n in [0..30]]; // G. C. Greubel, Jul 20 2019
(Sage) [4^(n-2)*n*(n-1) for n in (0..30)] # G. C. Greubel, Jul 20 2019
(GAP) List([0..30], n-> 4^(n-2)*n*(n-1)); # G. C. Greubel, Jul 20 2019
CROSSREFS
Cf. A038845.
Sequence in context: A059387 A126190 A121356 * A245019 A189769 A208533
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
New name from e.g.f. by Jon E. Schoenfield, Feb 07 2019
STATUS
approved