login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052782
a(n) = (5*n+1)^(n-1).
5
1, 1, 11, 256, 9261, 456976, 28629151, 2176782336, 194754273881, 20047612231936, 2334165173090451, 303305489096114176, 43513917611435838661, 6831675453247426400256, 1165087474585497590531111, 214481724045177216015794176, 42391158275216203514294433201
OFFSET
0,3
LINKS
J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
FORMULA
E.g.f.: exp(-1/5*LambertW(-5*x)).
From Peter Bala, Dec 19 2013: (Start)
The e.g.f. A(x) = 1 + x + 11*x^2/2! + 256*x^3/3! + 9261*x^4/4! + ... satisfies:
1) A(x*exp(-5*x)) = exp(x) = 1/A(-x*exp(5*x));
2) A^5(x) = 1/x*series reversion(x*exp(-5*x));
3) A(x^5) = 1/x*series reversion(x*exp(-x^5));
4) A(x) = exp(x*A(x)^5);
5) A(x) = 1/A(-x*A(x)^10). (End)
E.g.f.: (-LambertW(-5*x)/(5*x))^(1/5). - Vaclav Kotesovec, Dec 07 2014
Related to A001721 by Sum_{n >= 1} a(n)*x^n/n! = series reversion( 1/(1 + x)^5*log(1 + x) ) = series reversion(x - 11*x^2/2! + 107*x^3/3! - 1066*x^4/4! + ...). Cf. A000272, A052750. - Peter Bala, Jun 15 2016
MAPLE
spec := [S, {S=Set(B), B=Prod(Z, S, S, S, S, S)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{nmax = 50}, CoefficientList[Series[Exp[-LambertW[-5*x]/5], {x, 0, nmax}], x]*Range[0, nmax]!] (* or *) Table[(5*n+1)^(n-1), {n, 0, 50}] (* G. C. Greubel, Nov 16 2017 *)
PROG
(PARI) for(n=0, 50, print1((5*n+1)^(n-1), ", ")) \\ G. C. Greubel, Nov 16 2017
(PARI) x='x+O('x^50); Vec(serlaplace(exp(-lambertw(-5*x)/5))) \\ G. C. Greubel, Nov 16 2017
(Magma) [(5*n+1)^(n-1): n in [0..50]]; // G. C. Greubel, Nov 16 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
Better description from Vladeta Jovovic, Sep 02 2003
STATUS
approved