login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052784
E.g.f.: x^3*(exp(x)-1)^3.
0
0, 0, 0, 0, 0, 0, 720, 7560, 50400, 272160, 1300320, 5738040, 23958000, 96061680, 373477104, 1417295880, 5274360000, 19313985600, 69770966976, 249130574424, 880629138000
OFFSET
0,7
COMMENTS
Previous name was: A simple grammar.
FORMULA
E.g.f.: x^3*exp(x)^3-3*x^3*exp(x)^2+3*x^3*exp(x)-x^3 = x^3*(exp(x)-1)^3.
D-finite Recurrence: {a(1)=0, a(2)=0, a(4)=0, a(3)=0, a(5)=0, a(6)=720, (-36*n^2-66*n-6*n^3-36)*a(n)+(-44*n+11*n^3+33*n^2-132)*a(n+1)+(-6*n^3-36+42*n)*a(n+2)+(-3*n^2+n^3+2*n)*a(n+3)=0}
For n>3 , a(n) = (n-2)*(n-1)*n*(3^(n-3) - 3*2^(n-3) + 3). - Vaclav Kotesovec, Oct 01 2013
MAPLE
spec := [S, {B=Set(Z, 1 <= card), S=Prod(Z, Z, Z, B, B, B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
CoefficientList[Series[x^3*(E^x-1)^3, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 01 2013 *)
CROSSREFS
Sequence in context: A153760 A029574 A119540 * A052786 A187192 A052792
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
New name, using e.g.f., by Vaclav Kotesovec, Oct 01 2013
STATUS
approved