login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052783
A simple grammar.
0
0, 0, 0, 0, 0, 0, 720, 12600, 168000, 2116800, 26938800, 355509000, 4920379200, 71753338800, 1104107484480, 17923866760800, 306665482905600, 5521899225024000, 104470579944195840, 2073203785324575360
OFFSET
0,7
FORMULA
E.g.f.: x*log(-1/(-1+x))^5.
Recurrence: {a(1)=0, a(2)=0, a(4)=0, a(3)=0, a(5)=0, a(6)=720, (500*n^3 + 55*n^2 - 300*n^4 - n^10 + 120 - 224*n^5 - 20*n^8 + 146*n^6 - 10*n^9 + 60*n^7 - 326*n)*a(n) + (225*n^7 - n^4 - 299*n^5 + 120*n + 60*n^8 + 5*n^9 + 195*n^6 - 446*n^2 + 501*n^3)*a(n + 1) + ( - 535*n^3 - 895*n^4 - 10*n^8 - 130*n^7 - 300*n^2 - 1135*n^5 - 595*n^6)*a(n + 2) + (130*n^6 + 10*n^7 + 200*n + 1425*n^3 + 1330*n^4 + 615*n^5 + 790*n^2)*a(n + 3) + ( - 150*n - 455*n^2 - 60*n^5 - 5*n^6 - 510*n^3 - 260*n^4)*a(n + 4) + (n^5 + 10*n^4 + 35*n^3 + 50*n^2 + 24*n)*a(n + 5)}.
MAPLE
spec := [S, {B=Cycle(Z), S=Prod(Z, B, B, B, B, B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
CROSSREFS
Sequence in context: A052521 A213876 A052785 * A112002 A004033 A056271
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved