login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052521
Number of pairs of sequences of cardinality at least 3.
3
0, 0, 0, 0, 0, 0, 720, 10080, 120960, 1451520, 18144000, 239500800, 3353011200, 49816166400, 784604620800, 13076743680000, 230150688768000, 4268249137152000, 83230858174464000, 1703031405723648000
OFFSET
0,7
FORMULA
E.g.f.: x^6/(1-x)^2.
(n-5)*a(n+1) + (4 + 3*n - n^2)*a(n) = 0, with a(0) = a(1) = a(2) = a(3) = a(4) = a(5) = 0, a(6) = 720.
a(n) = (n-5)*n!.
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=6} 1/a(n) = 5477/7200 - 17*e/60 - gamma/120 + Ei(1)/120 = 5477/7200 - (17/60)*A001113 - (1/120)*A001620 + A091725/120.
Sum_{n>=6} (-1)^n/a(n) = 403/7200 - 1/(6*e) + gamma/120 - Ei(-1)/120 = 403/7200 - (1/6)*A068985 + (1/120)*A001620 + (1/120)*A099285. (End)
MAPLE
spec := [S, {B=Sequence(Z, 3 <= card), S=Prod(B, B)}, labeled]: # Pairs spec
seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
Table[If[n<6, 0, (n-5)*n!], {n, 0, 20}] (* G. C. Greubel, May 13 2019 *)
PROG
(PARI) {a(n) = if(n<6, 0, (n-5)*n!)}; \\ G. C. Greubel, May 13 2019
(Magma) [n le 5 select 0 else (n-5)*Factorial(n): n in [0..20]]; // G. C. Greubel, May 13 2019
(Sage) [0, 0, 0, 0, 0, 0]+[(n-5)*factorial(n) for n in (6..20)] # G. C. Greubel, May 13 2019
(GAP) Concatenation([0, 0, 0, 0, 0, 0], List([6..20], n-> (n-5)*Factorial(n))) # G. C. Greubel, May 13 2019
CROSSREFS
Cf. sequences with formula (n + k)*n! listed in A282466.
Sequence in context: A187192 A052792 A052790 * A213876 A052785 A052783
KEYWORD
nonn,easy
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved