login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052745
A simple grammar.
1
0, 0, 0, 6, 24, 110, 600, 3836, 28224, 235224, 2191680, 22584672, 255087360, 3134139840, 41620400640, 594082771200, 9070900715520, 147531542054400, 2546434166169600, 46489412442009600, 895079522340864000, 18125736166340812800, 385129713617510400000
OFFSET
0,4
FORMULA
E.g.f.: log(-1/(-1+x))^2*x.
Recurrence: a(1)=0, a(2)=0, a(3)=6, (-n+n^4+n^3-3*n^2+2)*a(n)+(-2*n^3-3*n^2+2*n)*a(n+1)+(n^2+n)*a(n+2)=0.
a(n) = (-1)^(n+1)*2*n*Stirling1(n-1, 2). - Vladeta Jovovic, Nov 08 2003
MAPLE
spec := [S, {B=Cycle(Z), S=Prod(Z, B, B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
Range[0, 30]! CoefficientList[Series[Log[-1/(-1 + x)]^2 x, {x, 0, 30}], x] (* Vincenzo Librandi, Jul 08 2015 *)
PROG
(Maxima) makelist((-1)^(n+1)*2*n*stirling1(n-1, 2), n, 0, 20); /* Bruno Berselli, May 25 2011 */
(Magma) [0] cat [(-1)^(n+1)*2*n*StirlingFirst(n-1, 2): n in [1..30]]; // Vincenzo Librandi, Jul 08 2015
CROSSREFS
Sequence in context: A075484 A122739 A038380 * A187668 A273813 A293257
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved