The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052746 a(0) = 0; a(n) = (2*n)^(n-1), n > 0. 10
 0, 1, 4, 36, 512, 10000, 248832, 7529536, 268435456, 11019960576, 512000000000, 26559922791424, 1521681143169024, 95428956661682176, 6502111422497947648, 478296900000000000000, 37778931862957161709568, 3189059870763703892770816, 286511799958070431838109696 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Expansion of inverse of x*exp(2x). Number of well-colored directed trees on n nodes. Well-colored means, each green vertex has at least a red child, each red vertex has no red child. Number of labeled rooted directed trees on n nodes. LINKS Robert Israel, Table of n, a(n) for n = 0..350 Federico Ardila, Matthias Beck, and Jodi McWhirter, The Arithmetic of Coxeter Permutahedra, arXiv:2004.02952 [math.CO], 2020. C. Banderier, J.-M. Le Bars, and V. Ravelomanana, Generating functions for kernels of digraphs, arXiv:math/0411138 [math.CO], 2004. Theo Douvropoulos, Joel Brewster Lewis, and Alejandro H. Morales, Hurwitz numbers for reflection groups III: Uniform formulas, arXiv:2308.04751 [math.CO], 2023, see p. 11. INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 702 FORMULA E.g.f.: -1/2*W(-2*x), where W is Lambert's W function. From Robert Israel, Jun 16 2016: (Start) E.g.f. g(x) satisfies g(x) = x*exp(2*g(x)) and (1-2*g(x)) g'(x) = g(x). a(n) = (2*n/(n-1)) * Sum_{j=1..n-1} binomial(n-1,j)*a(j)*a(n-j) for n >= 2. (End) a(n) = [x^n] x/(1 - 2*n*x). - Ilya Gutkovskiy, Oct 12 2017 Limit_{n->oo} a(n+1)/(n*a(n)) = 2*e. - Stefano Spezia, Mar 12 2023 MAPLE spec := [S, {B=Set(S), S=Prod(Z, B, B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20); MATHEMATICA terms = 19; A[x_] = -1/2 LambertW[-2 x]; CoefficientList[A[x] + O[x]^terms, x] Range[0, terms-1]! (* Jean-François Alcover, Jan 15 2019 *) Join[{0}, Table[(2n)^(n-1), {n, 20}]] (* Harvey P. Dale, Dec 14 2020 *) PROG (Sage)[lucas_number1(n, 2*n, 0) for n in range(0, 17)] # Zerinvary Lajos, Mar 09 2009 (PARI) a(n)=if(n, (2*n)^(n-1), 0) \\ Charles R Greathouse IV, Nov 20 2011 CROSSREFS Cf. A019762 (2*e), A038057, A097627. Sequence in context: A008546 A277404 A024253 * A145084 A179422 A098629 Adjacent sequences: A052743 A052744 A052745 * A052747 A052748 A052749 KEYWORD easy,nonn AUTHOR encyclopedia(AT)pommard.inria.fr, Jan 25 2000 EXTENSIONS New description from Vladeta Jovovic, Mar 08 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 11:45 EDT 2024. Contains 372824 sequences. (Running on oeis4.)