login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052746
a(0) = 0; a(n) = (2*n)^(n-1), n > 0.
10
0, 1, 4, 36, 512, 10000, 248832, 7529536, 268435456, 11019960576, 512000000000, 26559922791424, 1521681143169024, 95428956661682176, 6502111422497947648, 478296900000000000000, 37778931862957161709568, 3189059870763703892770816, 286511799958070431838109696
OFFSET
0,3
COMMENTS
Expansion of inverse of x*exp(2x).
Number of well-colored directed trees on n nodes. Well-colored means, each green vertex has at least a red child, each red vertex has no red child.
Number of labeled rooted directed trees on n nodes.
LINKS
Federico Ardila, Matthias Beck, and Jodi McWhirter, The Arithmetic of Coxeter Permutahedra, arXiv:2004.02952 [math.CO], 2020.
C. Banderier, J.-M. Le Bars, and V. Ravelomanana, Generating functions for kernels of digraphs, arXiv:math/0411138 [math.CO], 2004.
Theo Douvropoulos, Joel Brewster Lewis, and Alejandro H. Morales, Hurwitz numbers for reflection groups III: Uniform formulas, arXiv:2308.04751 [math.CO], 2023, see p. 11.
FORMULA
E.g.f.: -1/2*W(-2*x), where W is Lambert's W function.
From Robert Israel, Jun 16 2016: (Start)
E.g.f. g(x) satisfies g(x) = x*exp(2*g(x)) and (1-2*g(x)) g'(x) = g(x).
a(n) = (2*n/(n-1)) * Sum_{j=1..n-1} binomial(n-1,j)*a(j)*a(n-j) for n >= 2. (End)
a(n) = [x^n] x/(1 - 2*n*x). - Ilya Gutkovskiy, Oct 12 2017
Limit_{n->oo} a(n+1)/(n*a(n)) = 2*e. - Stefano Spezia, Mar 12 2023
MAPLE
spec := [S, {B=Set(S), S=Prod(Z, B, B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
terms = 19;
A[x_] = -1/2 LambertW[-2 x];
CoefficientList[A[x] + O[x]^terms, x] Range[0, terms-1]! (* Jean-François Alcover, Jan 15 2019 *)
Join[{0}, Table[(2n)^(n-1), {n, 20}]] (* Harvey P. Dale, Dec 14 2020 *)
PROG
(Sage)[lucas_number1(n, 2*n, 0) for n in range(0, 17)] # Zerinvary Lajos, Mar 09 2009
(PARI) a(n)=if(n, (2*n)^(n-1), 0) \\ Charles R Greathouse IV, Nov 20 2011
CROSSREFS
Cf. A019762 (2*e), A038057, A097627.
Sequence in context: A008546 A277404 A024253 * A145084 A179422 A098629
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
New description from Vladeta Jovovic, Mar 08 2003
STATUS
approved