The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052746 a(0) = 0; a(n) = (2*n)^(n-1), n > 0. 10
0, 1, 4, 36, 512, 10000, 248832, 7529536, 268435456, 11019960576, 512000000000, 26559922791424, 1521681143169024, 95428956661682176, 6502111422497947648, 478296900000000000000, 37778931862957161709568, 3189059870763703892770816, 286511799958070431838109696 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Expansion of inverse of x*exp(2x).
Number of well-colored directed trees on n nodes. Well-colored means, each green vertex has at least a red child, each red vertex has no red child.
Number of labeled rooted directed trees on n nodes.
LINKS
Federico Ardila, Matthias Beck, and Jodi McWhirter, The Arithmetic of Coxeter Permutahedra, arXiv:2004.02952 [math.CO], 2020.
C. Banderier, J.-M. Le Bars, and V. Ravelomanana, Generating functions for kernels of digraphs, arXiv:math/0411138 [math.CO], 2004.
Theo Douvropoulos, Joel Brewster Lewis, and Alejandro H. Morales, Hurwitz numbers for reflection groups III: Uniform formulas, arXiv:2308.04751 [math.CO], 2023, see p. 11.
FORMULA
E.g.f.: -1/2*W(-2*x), where W is Lambert's W function.
From Robert Israel, Jun 16 2016: (Start)
E.g.f. g(x) satisfies g(x) = x*exp(2*g(x)) and (1-2*g(x)) g'(x) = g(x).
a(n) = (2*n/(n-1)) * Sum_{j=1..n-1} binomial(n-1,j)*a(j)*a(n-j) for n >= 2. (End)
a(n) = [x^n] x/(1 - 2*n*x). - Ilya Gutkovskiy, Oct 12 2017
Limit_{n->oo} a(n+1)/(n*a(n)) = 2*e. - Stefano Spezia, Mar 12 2023
MAPLE
spec := [S, {B=Set(S), S=Prod(Z, B, B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
terms = 19;
A[x_] = -1/2 LambertW[-2 x];
CoefficientList[A[x] + O[x]^terms, x] Range[0, terms-1]! (* Jean-François Alcover, Jan 15 2019 *)
Join[{0}, Table[(2n)^(n-1), {n, 20}]] (* Harvey P. Dale, Dec 14 2020 *)
PROG
(Sage)[lucas_number1(n, 2*n, 0) for n in range(0, 17)] # Zerinvary Lajos, Mar 09 2009
(PARI) a(n)=if(n, (2*n)^(n-1), 0) \\ Charles R Greathouse IV, Nov 20 2011
CROSSREFS
Cf. A019762 (2*e), A038057, A097627.
Sequence in context: A008546 A277404 A024253 * A145084 A179422 A098629
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
New description from Vladeta Jovovic, Mar 08 2003
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 11:45 EDT 2024. Contains 372824 sequences. (Running on oeis4.)