login
A145084
Row 4 of square table A145080.
6
1, 4, 36, 524, 10756, 288764, 9667476, 390576684, 18591797156, 1023871865244, 64308208060916, 4553899456432844, 360155907603064196, 31561618500966519484, 3044291843751868832596, 321353247687162678690924
OFFSET
0,2
COMMENTS
Let R(n,x) be the e.g.f. of row n of square table A145080, then the
e.g.f.s satisfy: R(n,x) = exp( n*Integral R(n+1,x) dx ) for n>=1.
FORMULA
E.g.f.: A(x) = R(4,x) = exp( 4*Integral R(5,x) dx ) where R(n,x) is the e.g.f. of row n of square table A145080.
E.g.f.: A(x) = G(x)^4 where G(x) is the e.g.f. of A145089, which is row 4 of square table A145085.
PROG
(PARI) {a(n)=local(A=vector(n+5, j, 1+j*x)); for(i=0, n+4, for(j=0, n, m=n+4-j; A[m]=exp(m*intformal(A[m+1]+x*O(x^n))))); n!*polcoeff(A[4], n, x)}
(PARI) {a(n)=local(A=vector(n+5, j, 1+j*x)); for(i=0, n+4, for(j=0, n, m=n+4-j; A[m]=exp(intformal(A[m+1]^(m+1)+x*O(x^n))))); n!*polcoeff(A[4]^4, n, x)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 01 2008
STATUS
approved