The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A145082 Row 2 of square table A145080. 5
 1, 2, 10, 86, 1090, 18710, 412402, 11253638, 370191682, 14385490550, 649929193426, 33702126998438, 1984615178100514, 131531988461545238, 9736285622878908466, 799603624057192515014, 72433928850731333868034 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Let R(n,x) be the e.g.f. of row n of square table A145080, then the e.g.f.s satisfy: R(n,x) = exp( n*Integral R(n+1,x) dx ) for n>=1. LINKS FORMULA E.g.f.: A(x) = R(2,x) = exp( 2*Integral R(3,x) dx ) where R(n,x) is the e.g.f. of row n of square table A145080. E.g.f.: A(x) = G(x)^2 where G(x) is the e.g.f. of A145087, which is row 2 of square table A145085. PROG (PARI) a(n)=local(A=vector(n+3, j, 1+j*x)); for(i=0, n+2, for(j=0, n, m=n+2-j; A[m]=exp(m*intformal(A[m+1]+x*O(x^n))))); n!*polcoeff(A[2], n, x) (PARI) a(n)=local(A=vector(n+3, j, 1+j*x)); for(i=0, n+2, for(j=0, n, m=n+2-j; A[m]=exp(intformal(A[m+1]^(m+1)+x*O(x^n))))); n!*polcoeff(A[2]^2, n, x) (PARI) a(n)=local(A=1); for(k=0, n-1, A=exp(intformal((n+1-k)*(A+x*O(x^n))))); n!*polcoeff(A, n) for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 08 2014 CROSSREFS Cf. A145080, A145081, A145083, A145084, A145085, A145087. Sequence in context: A132397 A202745 A208833 * A335501 A295836 A245496 Adjacent sequences:  A145079 A145080 A145081 * A145083 A145084 A145085 KEYWORD nonn AUTHOR Paul D. Hanna, Oct 01 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 03:29 EST 2021. Contains 349400 sequences. (Running on oeis4.)