OFFSET
0,2
FORMULA
a(n) = (n!)^2 * [x^n] exp(2 * Sum_{k>=1} x^k / (k!)^2).
a(n) = (n!)^2 * [x^n] exp(2 * (BesselI(0,2*sqrt(x)) - 1)).
MATHEMATICA
a[0] = 1; a[n_] := a[n] = (2/n) Sum[Binomial[n, k]^2 (n - k) a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 17}]
nmax = 17; CoefficientList[Series[Exp[2 Sum[x^k/(k!)^2, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!^2
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 12 2020
STATUS
approved