login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371005
Expansion of e.g.f. (1/x) * Series_Reversion( x/(2*exp(x) - 1) ).
3
1, 2, 10, 86, 1074, 17742, 366026, 9074102, 263006050, 8732015390, 326876957562, 13624410416454, 625859432308754, 31418430350730542, 1711378030988087338, 100535991279811936982, 6336275006902469756610, 426480351471985076800062
OFFSET
0,2
FORMULA
a(n) = 1/(n+1) * Sum_{k=0..n+1} 2^k * (-1)^(n+1-k) * k^n * binomial(n+1,k).
a(n) = n! * Sum_{k=0..n} 2^k * Stirling2(n,k)/(n-k+1)!. - Seiichi Manyama, Nov 07 2024
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x/(2*exp(x)-1))/x))
(PARI) a(n) = sum(k=0, n+1, 2^k*(-1)^(n+1-k)*k^n*binomial(n+1, k))/(n+1);
CROSSREFS
Sequence in context: A364396 A367372 A372177 * A208833 A145082 A335501
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 08 2024
STATUS
approved