login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371007
Expansion of e.g.f. (1/x) * Series_Reversion( 2*x/(3*exp(2*x) - 1) ).
2
1, 3, 24, 336, 6864, 185808, 6286560, 255703584, 12163234560, 662866302720, 40735968170496, 2787616114300416, 210253334027606016, 17331011952028981248, 1550159522438672412672, 149539908497083261980672, 15476976326308703371984896
OFFSET
0,2
FORMULA
a(n) = 1/(2*(n+1)) * Sum_{k=0..n+1} 3^k * (-1)^(n+1-k) * k^n * binomial(n+1,k).
a(n) = n! * Sum_{k=0..n} 3^k * 2^(n-k) * Stirling2(n,k)/(n-k+1)!. - Seiichi Manyama, Nov 07 2024
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(2*x/(3*exp(2*x)-1))/x))
(PARI) a(n) = sum(k=0, n+1, 3^k*(-1)^(n+1-k)*k^n*binomial(n+1, k))/(2*(n+1));
CROSSREFS
Cf. A371005.
Sequence in context: A082166 A354259 A370055 * A144003 A334775 A153389
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 08 2024
STATUS
approved