|
|
A371009
|
|
Expansion of e.g.f. (1/x) * Series_Reversion( 2*x/(3 - exp(2*x)) ).
|
|
1
|
|
|
1, -1, 0, 8, -16, -336, 2464, 30176, -572160, -3654400, 193852928, -29664768, -88869165056, 788014352384, 51013392617472, -1125131950034944, -33201578814668800, 1536045242886979584, 19518336239699623936, -2267097378027280924672
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 1/(2*(n+1)) * Sum_{k=0..n+1} (-1)^k * 3^(n+1-k) * k^n * binomial(n+1,k).
|
|
PROG
|
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(2*x/(3-exp(2*x)))/x))
(PARI) a(n) = sum(k=0, n+1, (-1)^k*3^(n+1-k)*k^n*binomial(n+1, k))/(2*(n+1));
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|