login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208833
G.f.: 1+x = Sum_{n>=0} a(n) * x^n * Product_{k=1..n} (1 - k*x)/(1 + k*x).
1
1, 1, 2, 10, 86, 1082, 18202, 386834, 9990206, 304821826, 10757265314, 431846459786, 19460311559446, 973722006221210, 53610324625950938, 3223029995174243506, 210202324733850002846, 14787932100812573072642, 1116673488757504695366658, 90116245915518156986943818
OFFSET
0,3
EXAMPLE
G.f.: 1+x = 1 + 1*x*(1-x)/(1+x) + 2*x^2*(1-x)*(1-2*x)/((1+x)*(1+2*x)) + 10*x^3*(1-x)*(1-2*x)*(1-3*x)/((1+x)*(1+2*x)*(1+3*x)) + 86*x^4*(1-x)*(1-2*x)*(1-3*x)*(1-4*x)/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) +...
PROG
(PARI) {a(n)=if(n==0, 1, polcoeff(1+x-sum(k=0, n-1, a(k)*x^k*prod(j=1, k, (1-j*x)/(1+j*x+x*O(x^n)))), n))}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Cf. A208832.
Sequence in context: A367372 A372177 A371005 * A145082 A335501 A355083
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 01 2012
STATUS
approved