The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.



Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A145083 Row 3 of square table A145080. 6
1, 3, 21, 243, 4029, 88491, 2450085, 82648611, 3313381293, 154912893243, 8322387603093, 507658268093811, 34817646211022301, 2662987196578490187, 225556061819586894597, 21030571231219899162435 (list; graph; refs; listen; history; text; internal format)



Let R(n,x) be the e.g.f. of row n of square table A145080, then the

e.g.f.s satisfy: R(n,x) = exp( n*Integral R(n+1,x) dx ) for n>=1.


Table of n, a(n) for n=0..15.


E.g.f.: A(x) = R(3,x) = exp( 3*Integral R(4,x) dx ) where R(n,x) is the e.g.f. of row n of square table A145080.

E.g.f.: A(x) = G(x)^3 where G(x) is the e.g.f. of A145088, which is row 3 of square table A145085.


(PARI) a(n)=local(A=vector(n+4, j, 1+j*x)); for(i=0, n+3, for(j=0, n, m=n+3-j; A[m]=exp(m*intformal(A[m+1]+x*O(x^n))))); n!*polcoeff(A[3], n, x)

(PARI) a(n)=local(A=vector(n+4, j, 1+j*x)); for(i=0, n+3, for(j=0, n, m=n+3-j; A[m]=exp(intformal(A[m+1]^(m+1)+x*O(x^n))))); n!*polcoeff(A[3]^3, n, x)

(PARI) a(n)=local(A=1); for(k=0, n-1, A=exp(intformal((n-k+2)*(A+x*O(x^n))))); n!*polcoeff(A, n)

for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 08 2014


Cf. A145080, A145081, A145082, A145084, A145085, A145088.

Sequence in context: A334262 A234855 A058562 * A234303 A138213 A193333

Adjacent sequences:  A145080 A145081 A145082 * A145084 A145085 A145086




Paul D. Hanna, Oct 01 2008



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 17:27 EST 2021. Contains 349445 sequences. (Running on oeis4.)