login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A145088 Row 3 of square table A145085. 5
1, 1, 5, 49, 741, 15457, 416661, 13908049, 557865765, 26296627233, 1431946482453, 88859040485585, 6214831383604709, 485449303578082273, 42025472165413172501, 4005872618389765500113, 418072369437989483917349 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Let S(n,x) be the e.g.f. of row n of square table A145085, then the e.g.f.s satisfy: S(n,x) = exp( Integral S(n+1,x)^(n+1) dx ) for n>=0.

LINKS

Table of n, a(n) for n=0..16.

FORMULA

E.g.f.: A(x) = S(3,x) = exp( Integral S(4,x)^4 dx ) where S(n,x) is the e.g.f. of row n of square table A145085.

E.g.f.: A(x) = R(3,x)^(1/3) = exp( Integral R(4,x) dx ) where R(3,x) = e.g.f. of A145083 and R(4,x) = e.g.f. of A145084.

PROG

(PARI) {a(n)=local(A=vector(n+4, j, 1+j*x)); for(i=0, n+3, for(j=0, n, m=n+3-j; A[m]=exp(m*intformal(A[m+1]+x*O(x^n))))); n!*polcoeff(A[3]^(1/3), n, x)}

(PARI) {a(n)=local(A=vector(n+4, j, 1+j*x)); for(i=0, n+3, for(j=0, n, m=n+3-j; A[m]=exp(intformal(A[m+1]^(m+1)+x*O(x^n))))); n!*polcoeff(A[3], n, x)}

CROSSREFS

Cf. A145085, A145086, A145087, A145089; A145080, A145083.

Sequence in context: A028575 A006554 A052750 * A301386 A192557 A290755

Adjacent sequences:  A145085 A145086 A145087 * A145089 A145090 A145091

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Oct 01 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 04:22 EST 2021. Contains 349418 sequences. (Running on oeis4.)