login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058562
Another 3-way generalization of series-parallel networks with n labeled edges.
7
0, 1, 3, 21, 243, 3933, 81819, 2080053, 62490339, 2166106509, 85092601707, 3735939709989, 181287330220467, 9634718677393917, 556569415611455931, 34723276781195740437, 2326773811332029313411, 166666995789875216053101, 12708546598923724476443403
OFFSET
0,3
LINKS
O. Bodini, A. Genitrini, F. Peschanski and N. Rolin, Associativity for binary parallel processes, CALDAM 2015; [Slides]
FORMULA
E.g.f.: -3/2*LambertW(-2/3*exp(-2/3+1/3*x))-1. - Vladeta Jovovic, Jun 25 2007
E.g.f.: A(x) = Series_Reversion[ 3*log(1+x) - 2*x ]. [Paul D. Hanna, Aug 03 2008]
Let f(x) = (1+x)/(1-2*x). Let D be the operator g(x) -> d/dx(f(x)*g(x)). Then for n>=1, a(n) = D^(n-1)(1) evaluated at x = 0. - Peter Bala, Sep 05 2011
log(1 + A(x)) = x + 2*x^2/2! + 14*x^3/3! + 162*x^4/4! + ... is the e.g.f. for A201465. - Peter Bala, Jul 12 2012
a(n) = sum(k=0..n-1, (n+k-1)!*sum(j=0..k, 1/(k-j)!*sum(l=0..j, (3^(j-l)*(2)^l*(-1)^(l+j)*stirling1(n-l+j-1,j-l))/(l!*(n-l+j-1)!)))). [Vladimir Kruchinin, Sep 26 2012]
G.f.: x/Q(0), where Q(k)= 1 - (k+1)*x - 2*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 01 2013
a(n) ~ sqrt(3) * n^(n-1) / (2*exp(n) * (log(27/8)-1)^(n-1/2)). - Vaclav Kotesovec, Oct 05 2013
a(n) = a(n-1) + Sum_{j=1..n-1} binomial(n,j)*a(j)*a(n-j) for n>1. - Peter Luschny, May 24 2017
MAPLE
spec := [ N, {N=Union(Z, S, P, Q), S=Set(Union(Z, P, Q), card>=2), P=Set(Union(Z, S, Q), card>=2), Q=Set(Union(Z, S, P), card>=2)}, labeled ]; [seq(combstruct[count](spec, size=n), n=0..40)]; # N=A058562, S=A058575
# Alternatively:
A058562_list := proc(len) local A, n; A[0] := 0; A[1] := 1; for n from 2 to len do
A[n] := A[n-1] + add(binomial(n, j)*A[j]*A[n-j], j=1..n-1) od:
convert(A, list) end: A058562_list(18); # Peter Luschny, May 24 2017
MATHEMATICA
a[n_] := Sum[(n+k-1)!*Sum[1/(k-j)!*Sum[(3^(j-l)*(2)^l*(-1)^(l+j)* StirlingS1[n-l+j-1, j-l])/(l!*(n-l+j-1)!), {l, 0, j}], {j, 0, k}], {k, 0, n-1}]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Feb 26 2013, after Vladimir Kruchinin *)
PROG
(PARI) {a(n)=if(n<1, 0, n!*polcoeff(serreverse(3*log(1+x+x*O(x^n))-2*x), n))} \\ Paul D. Hanna, Aug 03 2008
(Maxima) a(n):=sum((n+k-1)!*sum(1/(k-j)!*sum((3^(j-l)*(2)^l*(-1)^(l+j)*stirling1(n-l+j-1, j-l))/(l!*(n-l+j-1)!), l, 0, j), j, 0, k), k, 0, n-1); \\ Vladimir Kruchinin, Sep 26 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 26 2000
STATUS
approved