login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A201465 E.g.f. satisfies: A(x) = (x + 2*exp(A(x)) - 2)/3. 2
1, 2, 14, 162, 2622, 54546, 1386702, 41660226, 1444071006, 56728401138, 2490626473326, 120858220146978, 6423145784929278, 371046277074303954, 23148851187463826958, 1551182540888019542274, 111111330526583477368734, 8472364399282482984295602, 685178683361064789536947374 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
FORMULA
E.g.f. A(x) satisfies: x = A( 2 + 3*x - 2*exp(x) ).
a(n)=(sum(k=0..n-1, (n+k-1)!*sum(j=0..k, 1/(k-j)!*sum(i=0..j, (3^i*(-1)^(i)*2^(j-i)*stirling2(n+j-i-1,j-i))/(i!*(n+j-i-1)!))))), n>0. [From Vladimir Kruchinin, Feb 04 2012]
exp(A(x))-1 is the compositional inverse of 3*log(1+x)-2*x and is the e.g.f. of A058562. - Peter Bala, Jul 12 2012
G.f.: 1/Q(0), where Q(k)= 1 - k*x - 2*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 01 2013
E.g.f.: (x-2)/3 - LambertW(-2/3*exp((x-2)/3)). - Vaclav Kotesovec, Dec 26 2013
a(n) ~ n^(n-1) / (sqrt(3) * exp(n) * (3*log(3)-3*log(2)-1)^(n-1/2)). - Vaclav Kotesovec, Dec 26 2013
O.g.f.: Sum_{n>=0} 2^n / Product_{k=0..n} (3 - k*x). - Paul D. Hanna, Oct 27 2014
EXAMPLE
E.g.f.: A(x) = x + 2*x^2 + 14*x^3/3! + 162*x^4/4! + 2622*x^5/5! + 54546*x^6/6! +...
The exponential of the e.g.f. begins:
exp(A(x)) = 1 + x + 3*x^2/2! + 21*x^3/3! + 243*x^4/4! + 3933*x^5/5! + 81819*x^6/6! +...
where x = 2 + 3*A(x) - 2*exp(A(x)).
...
O.g.f.: G(x) = 1 + 2*x + 14*x^2 + 162*x^3 + 2622*x^4 + 54546*x^5 +...
where
G(x) = 1/3 + 2/(3*(3-x)) + 2^2/(3*(3-x)*(3-2*x)) + 2^3/(3*(3-x)*(3-2*x)*(3-3*x)) + 2^4/(3*(3-x)*(3-2*x)*(3-3*x)*(3-4*x)) + 2^5/(3*(3-x)*(3-2*x)*(3-3*x)*(3-4*x)*(3-5*x)) +...
MATHEMATICA
Rest[CoefficientList[1 + InverseSeries[Series[2 + 3*x - 2*Exp[x], {x, 0, 20}], x], x]* Range[0, 20]!] (* Vaclav Kotesovec, Dec 26 2013 *)
PROG
(PARI) {a(n)=n!*polcoeff(serreverse(2+3*x - 2*exp(x+x^2*O(x^n))), n)}
for(n=0, 25, print1(round(A[n+1]), ", "))
(PARI) \p100 \\ set precision
{A=Vec(sum(n=0, 600, 1.*2^n/prod(k=0, n, 3 - k*x + O(x^31))))}
for(n=0, 25, print1(round(A[n+1]), ", ")) \\ Paul D. Hanna, Oct 27 2014
(Maxima) a(n):=(sum((n+k-1)!*sum(1/(k-j)!*sum((3^i*(-1)^(i)*2^(j-i)*stirling2(n+j-i-1, j-i))/(i!*(n+j-i-1)!), i, 0, j), j, 0, k), k, 0, n-1)); [From Vladimir Kruchinin, Feb 04 2012]
CROSSREFS
Cf. variants: A000311, A201466. A058562.
Sequence in context: A354241 A364398 A074635 * A245894 A277362 A209937
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 01 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 17:33 EST 2023. Contains 367525 sequences. (Running on oeis4.)