login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354241
Expansion of e.g.f. 1/sqrt(1 + 4 * log(1-x)).
8
1, 2, 14, 160, 2544, 51888, 1292208, 38012448, 1289847456, 49593778368, 2130914229312, 101188640375040, 5262325852773120, 297450338175682560, 18157597034693207040, 1190483599149657584640, 83433723762978141189120, 6224485980052510972692480
OFFSET
0,2
FORMULA
E.g.f.: Sum_{k>=0} binomial(2*k,k) * (-log(1-x))^k.
a(n) = Sum_{k=0..n} (2*k)! * |Stirling1(n,k)|/k!.
a(n) ~ n^n / (sqrt(2) * (exp(1/4)-1)^(n + 1/2) * exp(3*n/4)). - Vaclav Kotesovec, Jun 04 2022
a(0) = 1; a(n) = Sum_{k=1..n} (4 - 2*k/n) * (k-1)! * binomial(n,k) * a(n-k). - Seiichi Manyama, Sep 09 2023
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/sqrt(1+4*log(1-x))))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, binomial(2*k, k)*(-log(1-x))^k)))
(PARI) a(n) = sum(k=0, n, (2*k)!*abs(stirling(n, k, 1))/k!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 20 2022
STATUS
approved