login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A354241 Expansion of e.g.f. 1/sqrt(1 + 4 * log(1-x)). 7

%I #19 Sep 10 2023 08:39:29

%S 1,2,14,160,2544,51888,1292208,38012448,1289847456,49593778368,

%T 2130914229312,101188640375040,5262325852773120,297450338175682560,

%U 18157597034693207040,1190483599149657584640,83433723762978141189120,6224485980052510972692480

%N Expansion of e.g.f. 1/sqrt(1 + 4 * log(1-x)).

%F E.g.f.: Sum_{k>=0} binomial(2*k,k) * (-log(1-x))^k.

%F a(n) = Sum_{k=0..n} (2*k)! * |Stirling1(n,k)|/k!.

%F a(n) ~ n^n / (sqrt(2) * (exp(1/4)-1)^(n + 1/2) * exp(3*n/4)). - _Vaclav Kotesovec_, Jun 04 2022

%F a(0) = 1; a(n) = Sum_{k=1..n} (4 - 2*k/n) * (k-1)! * binomial(n,k) * a(n-k). - _Seiichi Manyama_, Sep 09 2023

%o (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/sqrt(1+4*log(1-x))))

%o (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, binomial(2*k, k)*(-log(1-x))^k)))

%o (PARI) a(n) = sum(k=0, n, (2*k)!*abs(stirling(n, k, 1))/k!);

%Y Cf. A354240, A354242, A354244.

%K nonn

%O 0,2

%A _Seiichi Manyama_, May 20 2022

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 05:03 EST 2023. Contains 367531 sequences. (Running on oeis4.)