The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052112 Number of self-complementary directed 2-multigraphs on n nodes. 3
 1, 2, 14, 159, 7629, 599456, 226066304, 139178815861, 410179495378288, 2055126126323159298, 48234291396964332998082, 2016523952125103590736221923, 382812826011951187177138562992638, 135681830960694827549160289095792266106 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A 2-multigraph is similar to an ordinary graph except there are 0, 1 or 2 edges between any two nodes (self-loops are not allowed). LINKS Andrew Howroyd, Table of n, a(n) for n = 1..50 MATHEMATICA permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m]; edges[v_List] := 2 Sum[Sum[If[EvenQ[v[[i]] v[[j]]], GCD[v[[i]], v[[j]]], 0], {j, 1, i - 1}], {i, 2, Length[v]}] + Sum[If[EvenQ[v[[i]]], v[[i]] - 1, 0], {i, 1, Length[v]}]; a[n_] := Module[{s = 0}, Do[s += permcount[p]*3^edges[p], {p, IntegerPartitions[n]}]; s/n!]; Array[a, 25] (* Jean-François Alcover, Sep 12 2019, after Andrew Howroyd *) PROG (PARI) permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} edges(v) = {2*sum(i=2, #v, sum(j=1, i-1, if(v[i]*v[j]%2==0, gcd(v[i], v[j])))) + sum(i=1, #v, if(v[i]%2==0, v[i]-1))} a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)); s/n!} \\ Andrew Howroyd, Sep 16 2018 CROSSREFS Cf. A053467, A003086, A053588. Sequence in context: A218295 A354242 A268011 * A354241 A364398 A074635 Adjacent sequences: A052109 A052110 A052111 * A052113 A052114 A052115 KEYWORD nonn AUTHOR Vladeta Jovovic, Jan 21 2000 EXTENSIONS Terms a(14) and beyond from Andrew Howroyd, Sep 16 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 30 21:59 EDT 2023. Contains 365812 sequences. (Running on oeis4.)