login
A052110
Decimal expansion of c^c^c^... where c is the constant defined in A037077.
1
4, 6, 1, 9, 2, 1, 4, 4, 0, 1, 6, 4, 4, 1, 1, 4, 4, 5, 4, 0, 8, 5, 8, 8, 6, 4, 2, 6, 1, 4, 1, 9, 4, 5, 7, 8, 6, 3, 5, 0, 2, 8, 2, 8, 0, 1, 3, 6, 4, 8, 8, 2, 2, 8, 4, 4, 3, 4, 1, 6, 2, 9, 2, 7, 3, 5, 8, 9, 1, 7, 2, 5, 0, 2, 1, 4, 1, 5, 0, 1, 9, 5, 2, 8, 7, 5, 1, 9, 9, 4, 2, 2, 2, 5, 8, 7, 8, 6, 0, 4, 7, 3, 5, 7, 5
OFFSET
0,1
COMMENTS
See (Weisstein) link on Power Tower.
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 448-452.
LINKS
Eric Weisstein's World of Mathematics, Power Tower.
Gus Wiseman, Tetration.
OEIS Wiki, Tetration.
OEIS Wiki, MRB constant.
Wikipedia, Tetration.
EXAMPLE
0.4619214401644114454085886426141945786350282801364882284434162927358917250...
MATHEMATICA
n = 105; M = NSum[(-1)^n*(n^(1/n) - 1), {n, 1, Infinity}, WorkingPrecision -> n + 10, Method -> "AlternatingSigns"]; L = Log[M]; N[-ProductLog[-L]/L, n] (* Marvin Ray Burns, Mar 08 2013 *)
PROG
(PARI)
default(realprecision, 66);
M=sumalt(x=1, (-1)^x*((x^(1/x))-1));
solve(x=.46, .462, x^(1/x)-M)
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Marvin Ray Burns Jan 20 2000, Mar 28 2008, Nov 08 2009, Mar 24 2010, Jun 27 2011
EXTENSIONS
Simplified definition by Marvin Ray Burns, Mar 08 2013
STATUS
approved