login
A197020
Decimal expansion of the radius of the circle tangent to the curve y=cos(2x) at points (x,y) and (-x,y), where 0<x<1.
9
4, 6, 1, 9, 2, 3, 1, 8, 7, 7, 0, 5, 2, 2, 8, 2, 3, 8, 2, 1, 7, 1, 5, 3, 0, 3, 3, 3, 6, 9, 3, 8, 9, 9, 9, 9, 6, 2, 0, 4, 3, 4, 7, 2, 6, 7, 0, 5, 6, 8, 8, 6, 5, 7, 9, 7, 6, 7, 0, 6, 4, 3, 0, 3, 7, 9, 5, 1, 1, 3, 9, 4, 1, 1, 5, 2, 5, 1, 1, 1, 6, 7, 9, 9, 7, 9, 8, 7, 4, 3, 0, 9, 9, 4, 4, 1, 5, 0, 3, 6
OFFSET
0,1
COMMENTS
Let (x,y) denote the point of tangency. Then
x=0.371462711321448956555130330602759317162856415...
y=0.736492824477900896049098419167188850255855384...
slope=-1.3528907117613955482765053348775509428929...
(The Mathematica program includes a graph.)
EXAMPLE
radius=0.461923187705228238217153033369389999...
MATHEMATICA
r = .462; c = 2;
Show[Plot[Cos[c*x], {x, -2, 2}],
ContourPlot[x^2 + (y - r)^2 == r^2, {x, -1, 1}, {y, -1, 1}], PlotRange -> All, AspectRatio -> Automatic]
t = x /. FindRoot[c*Sin[c*x] Cos[c*x] - x ==
x*Sqrt[1 + (c*Sin[c*x])^2], {x, .25, .55}, WorkingPrecision -> 100]
RealDigits[t] (* x coordinate of tangency point *)
y = Cos[c*t] (* y coordinate of tangency point *)
radius = Cos[c*t] - t/(c*Sin[c*t]) (* A197020 *)
RealDigits[radius]
slope = -c*Sin[c*t] (* slope at tangency point *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 08 2011
STATUS
approved