OFFSET
0,1
COMMENTS
Let (x,y) denote the point of tangency. Then
x=0.4252834568497833490618545391964703664552948...
y=0.2906881405190418936802785128662388404186594...
slope=-0.41257900534470955829852211550705870735...
(The Mathematica program includes a graph.)
EXAMPLE
radius=0.218729488803644065897285223268121049303636199...
MATHEMATICA
r = .219; c = 3;
Show[Plot[Cos[c*x], {x, 0, Pi}],
ContourPlot[(x - r)^2 + (y - r)^2 == r^2, {x, -1, 1}, {y, -1, 1}], PlotRange -> All, AspectRatio -> Automatic]
f[x_] := (x - c*Sin[c*x] Cos[c*x])/(1 - c*Sin[c*x]);
t = x /. FindRoot[Cos[c*x] == f[x] + Sqrt[2*f[x]*x - x^2], {x, .5, 1}, WorkingPrecision -> 100]
x1 = Re[t] (* x coordinate of tangency point *)
y = Cos[c*x1] (* y coordinate of tangency point *)
radius = f[x1]
RealDigits[radius] (* A197018 *)
slope = -Sin[x1] (* slope at tangency point *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 08 2011
STATUS
approved