login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A197018
Decimal expansion of the radius of the circle tangent to the curve y=cos(3x) and to the positive x and y axes.
4
2, 1, 8, 7, 2, 9, 4, 8, 8, 8, 0, 3, 6, 4, 4, 0, 6, 5, 8, 9, 7, 2, 8, 5, 2, 2, 3, 2, 6, 8, 1, 2, 1, 0, 4, 9, 3, 0, 3, 6, 3, 6, 1, 9, 9, 7, 3, 1, 4, 1, 4, 9, 9, 5, 8, 2, 2, 1, 6, 6, 9, 4, 6, 6, 9, 0, 3, 1, 8, 5, 8, 6, 5, 0, 7, 6, 2, 9, 6, 0, 6, 3, 4, 5, 6, 6, 6, 1, 3, 7, 9, 4, 2, 8, 4, 3, 0, 0, 7
OFFSET
0,1
COMMENTS
Let (x,y) denote the point of tangency. Then
x=0.4252834568497833490618545391964703664552948...
y=0.2906881405190418936802785128662388404186594...
slope=-0.41257900534470955829852211550705870735...
(The Mathematica program includes a graph.)
EXAMPLE
radius=0.218729488803644065897285223268121049303636199...
MATHEMATICA
r = .219; c = 3;
Show[Plot[Cos[c*x], {x, 0, Pi}],
ContourPlot[(x - r)^2 + (y - r)^2 == r^2, {x, -1, 1}, {y, -1, 1}], PlotRange -> All, AspectRatio -> Automatic]
f[x_] := (x - c*Sin[c*x] Cos[c*x])/(1 - c*Sin[c*x]);
t = x /. FindRoot[Cos[c*x] == f[x] + Sqrt[2*f[x]*x - x^2], {x, .5, 1}, WorkingPrecision -> 100]
x1 = Re[t] (* x coordinate of tangency point *)
y = Cos[c*x1] (* y coordinate of tangency point *)
radius = f[x1]
RealDigits[radius] (* A197018 *)
slope = -Sin[x1] (* slope at tangency point *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 08 2011
STATUS
approved