OFFSET
1,1
COMMENTS
See A197008 for a discussion and guide to related sequences.
EXAMPLE
d=9.865662555435090192548544326689054243084...
x-intercept=(6.6342...,0)
y-intercept=(0,7.3019...)
MAPLE
3*(1+(4/3)^(2/3))^(3/2); evalf(%) ; # R. J. Mathar, Nov 08 2022
MATHEMATICA
f[x_] := x^2 + (k*x/(x - h))^2; t = h + (h*k^2)^(1/3);
h = 3; k = 4; d = N[f[t]^(1/2), 100]
RealDigits[d] (* A197015 *)
x = N[t] (* x-intercept *)
y = N[k*t/(t - h)] (* y-intercept *)
Show[Plot[k + k (x - h)/(h - t), {x, 0, t}],
ContourPlot[(x - h)^2 + (y - k)^2 == .01, {x, 0, 4}, {y, 0, 5}], PlotRange -> All, AspectRatio -> Automatic]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 10 2011
STATUS
approved