login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196022
E.g.f. satisfies: A(x) = Sum_{n>=0} 1/n! * Sum_{k=0..n} C(n,k)*(1 + x/2*A(x)^(n-k))^(n-k) * (-1 + x/2*A(x)^k)^k.
4
1, 1, 3, 22, 269, 4676, 106027, 2966909, 98814921, 3818572219, 167999566061, 8292669672343, 453958089569833, 27300462412168531, 1789601591598075179, 127031469572649790786, 9709396866317453042033, 795229841271312470470904, 69499103185446754949076817
OFFSET
0,3
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 22*x^3/3! + 269*x^4/4! + 4676*x^5/5! +...
where e.g.f. A = A(x) satisfies:
A(x) = 1 + ((1+x/2*A) + (-1+x/2*A)) +
1/2!*((1+x/2*A^2)^2 + 2*(1+x/2*A)*(-1+x/2*A) + (-1+x/2*A^2)^2) +
1/3!*((1+x/2*A^3)^3 + 3*(1+x/2*A^2)^2*(-1+x/2*A) + 3*(1+x/2*A)*(-1+x/2*A^2)^2 + (-1+x/2*A^3)^3) +
1/4!*((1+x/2*A^4)^4 + 4*(1+x/2*A^3)^3*(-1+x/2*A) + 6*(1+x/2*A^2)^2*(-1+x/2*A^2)^2 + 4*(1+x/2*A)*(-1+x/2*A^3)^3 + (-1+x/2*A^4)^4) +
1/5!*((1+x/2*A^5)^5 + 5*(1+x/2*A^4)^4*(-1+x/2*A) + 10*(1+x/2*A^3)^3*(-1+x/2*A^2)^2 + 10*(1+x/2*A^2)^2*(-1+x/2*A^3)^3 + 5*(1+x/2*A)*(-1+x/2*A^4)^4 + (-1+x/2*A^5)^5) +...
PROG
(PARI) {a(n)=local(A=1+x, X=x+x*O(x^n)); for(i=1, n, A=1+sum(m=1, n, 1/m!*sum(k=0, m, binomial(m, k)*(1+X/2*A^(m-k))^(m-k)*(-1+X/2*A^k)^k))); n!*polcoeff(A, n)}
CROSSREFS
Sequence in context: A195512 A052892 A155806 * A319147 A074706 A293989
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 26 2011
STATUS
approved