login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155806
E.g.f. satisfies: A(x) = Sum_{n>=0} x^n/n! * A(x)^(n^2).
5
1, 1, 3, 22, 269, 4616, 102847, 2824816, 92355769, 3506278528, 151720849691, 7375146930944, 398113181435653, 23640909385071616, 1532325553233566743, 107698939845869111296, 8162300091585206125553, 663836705760309127184384
OFFSET
0,3
FORMULA
E.g.f. satisfies: A(x) = B(x/A(x)) and A(x*B(x)) = B(x) where B(x) satisfies:
B(x) = Sum_{n>=0} x^n/n! * B(x)^(n*(n+1)) and is the e.g.f. of A155807.
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 22*x^3/3! + 269*x^4/4! + 4616*x^5/5! +...
where e.g.f. A(x) satisfies:
A(x) = 1 + x*A(x) + x^2/2!*A(x)^4 + x^3/3!*A(x)^9 + x^4/4!*A(x)^16 +...
Let B(x) = A(x*B(x)) be the e.g.f. of A155807 then:
B(x) = 1 + x*B(x)^2 + x^2/2!*B(x)^6 + x^3/3!*B(x)^12 + x^4/4!*B(x)^20 +...
B(x) = 1 + x + 5*x^2/2! + 55*x^3/3! + 969*x^4/4! + 23661*x^5/5! + 741013*x^6/6! +...
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1+sum(k=1, n, x^k*A^(k^2)/k!+x*O(x^n))); n!*polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 27 2009
STATUS
approved