login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195512
E.g.f. satisfies: A(x) = exp(x) - exp(x*A(x)) + exp(x*A(x)^2).
3
1, 1, 3, 22, 269, 4426, 91567, 2289918, 67241113, 2268437842, 86469399731, 3675752021206, 172416288958597, 8846409344413434, 492872054023465495, 29633162309495166526, 1912378764997833270065, 131856366022646024614306, 9673570273675513393639387
OFFSET
0,3
LINKS
FORMULA
E.g.f. satisfies:
_ A(x) = Sum_{n>=0} x^n*(1 - A(x)^n + A(x)^(2*n)) / n!.
_ A(x) = B(x/A(x)) where B(x) = A(x*B(x)) equals the e.g.f. of A195513 and satisfies: B(x) = exp(x*B(x)) - exp(x*B(x)^2) + exp(x*B(x)^3).
a(n) ~ n^(n-1) * sqrt((-exp(r) + exp(r*s)*s - exp(r*s^2)*s^2) / (exp(r*s)*r - 2*exp(r*s^2)*(1 + 2*r*s^2))) / (exp(n) * r^n), where r = 0.2257106995256572853... and s = 1.621740007241874226... are the roots of the equations 1 + exp(r*s)*r = 2*exp(r*s^2)*r*s, and exp(r) + exp(r*s^2) = exp(r*s) + s. - Vaclav Kotesovec, Jan 13 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 22*x^3/3! + 269*x^4/4! + 4426*x^5/5! +...
Related series begin:
exp(x*A(x)) = 1 + x + 3*x^2/2! + 16*x^3/3! + 149*x^4/4! + 2136*x^5/5! +...
exp(x*A(x)^2) = 1 + x + 5*x^2/2! + 37*x^3/3! + 417*x^4/4! + 6561*x^5/5! +...
The e.g.f. of A195513 begins:
B(x) = 1 + x + 5*x^2/2! + 55*x^3/3! + 969*x^4/4! + 23471*x^5/5! +...
where A(x*B(x)) = B(x) = exp(x*B(x)) - exp(x*B(x)^2) + exp(x*B(x)^3).
PROG
(PARI) {a(n)=local(X=x+x*O(x^n), A=1+X); for(i=1, n, A=exp(X)-exp(X*A)+exp(X*A^2)); n!*polcoeff(A, n)}
(PARI) {a(n)=local(X=x+x*O(x^n), A=1+X); for(i=1, n, A=sum(m=0, n, x^m*(1-A^m+A^(2*m))/m!)); n!*polcoeff(A, n)}
CROSSREFS
Sequence in context: A242794 A367181 A005264 * A052892 A155806 A196022
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 20 2011
STATUS
approved