login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195513
E.g.f. satisfies: A(x) = exp(x*A(x)) - exp(x*A(x)^2) + exp(x*A(x)^3).
3
1, 1, 5, 55, 969, 23471, 722893, 27024719, 1188673041, 60146184799, 3441880575621, 219796618046831, 15495685980169849, 1195427487905706095, 100171535560697901693, 9060375019110233758111, 879801446255000326901025, 91290178606709678636278463
OFFSET
0,3
LINKS
FORMULA
E.g.f. A(x) satisfies:
_ A(x) = Sum_{n>=0} x^n*(A(x)^n - A(x)^(2*n) + A(x)^(3*n)) / n!.
_ A(x) = C(x*A(x)) where C(x) = A(x/C(x)) equals the e.g.f. of A195512 and satisfies: C(x) = exp(x) - exp(x*C(x)) + exp(x*C(x)^2).
a(n) ~ n^(n-1) * sqrt(s*(exp(r*s) - exp(r*s^2)*s + exp(r*s^3)*s^2) / (exp(r*s)*r - 2*exp(r*s^2)*(1 + 2*r*s^2) + 3*exp(r*s^3)*s*(2 + 3*r*s^3))) / (exp(n) * r^n), where r = 0.149801756007819089... and s = 1.41946728153839215... are the roots of the equations r*(exp(r*s) + 3*exp(r*s^3)*s^2) = 1 + 2*exp(r*s^2)*r*s, and exp(r*s) + exp(r*s^3) = exp(r*s^2) + s. - Vaclav Kotesovec, Jan 13 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 55*x^3/3! + 969*x^4/4! + 23471*x^5/5! +...
Related series begin:
exp(x*A(x)) = 1 + x + 3*x^2/2! + 22*x^3/3! + 305*x^4 + 6476*x^5/5! + +...
exp(x*A(x)^2) = 1 + x + 5*x^2/2! + 49*x^3/3! + 777*x^4 + 17521*x^5/5! +...
exp(x*A(x)^3) = 1 + x + 7*x^2/2! + 82*x^3/3! + 1441*x^4 + 34516*x^5/5! +...
The e.g.f. of A195512 begins:
C(x) = 1 + x + 3*x^2/2! + 22*x^3/3! + 269*x^4/4! + 4426*x^5/5! +...
where A(x/C(x)) = C(x) = exp(x) - exp(x*C(x)) + exp(x*C(x)^2).
PROG
(PARI) {a(n)=local(X=x+x*O(x^n)); for(i=1, n, A=exp(X*A)-exp(X*A^2)+exp(X*A^3)); n!*polcoeff(A, n)}
(PARI) {a(n)=local(X=x+x*O(x^n), A=1+X); for(i=1, n, A=sum(m=0, n, x^m*(A^m-A^(2*m)+A^(3*m))/m!)); n!*polcoeff(A, n)}
CROSSREFS
Sequence in context: A357394 A093352 A293013 * A172493 A155807 A135861
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 20 2011
STATUS
approved