login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172493
E.g.f. satisfies: A(x) = Sum_{n>=0} AGM(1, A(x)^(4n))*x^n/n!, where AGM(x,y) is the arithmetic-geometric mean of Gauss.
1
1, 1, 5, 55, 969, 23471, 722893, 27025349, 1188914961, 60185489239, 3446702343621, 220325043859361, 15551414491260409, 1201309497935878085, 100806806760636877293, 9131452009580323562311, 888090470343071154122145
OFFSET
0,3
COMMENTS
a(61) is negative. - Vaclav Kotesovec, Mar 31 2024
LINKS
EXAMPLE
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 55*x^3/3! + 969*x^4/4! +...
The e.g.f. satisfies the series:
A(x) = 1 + AGM(1,A(x)^4)*x + AGM(1,A(x)^8)*x^2/2! + AGM(1,A(x)^12)*x^3/3! + AGM(1,A(x)^16)*x^4/4! +...
In series expansions of AGM(1,A(x)^(4n)), the coefficients of x^k/k! for n=1..8 begin:
n=1: [1, 2, 14, 176, 3298, 82872, 2618340, 99766088, ...];
n=2: [1, 4, 40, 616, 12992, 352104, 11734032, ...];
n=3: [1, 6, 78, 1440, 34338, 1013736, 36005076, ...];
n=4: [1, 8, 128, 2768, 74176, 2388048, 90792672, ...];
n=5: [1, 10, 190, 4720, 140930, 4935000, 201048420, ...];
n=6: [1, 12, 264, 7416, 244608, 9279672, 404745840, ...];
n=7: [1, 14, 350, 10976, 396802, 16237704, 756856212, ..];
n=8: [1, 16, 448, 15520, 610688, 26840736, 1333868736, ...].
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(k=1, n, agm(1, (A+x*O(x^n))^(4*k))*x^k/k!)); n!*polcoeff(A, n)}
CROSSREFS
Sequence in context: A093352 A293013 A195513 * A155807 A135861 A141361
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jan 26 2011
STATUS
approved