The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A172491 Number of partitions of n into consecutive initial Fibonacci numbers. 1
 1, 2, 3, 5, 7, 10, 14, 19, 25, 33, 42, 54, 68, 85, 105, 129, 157, 190, 228, 273, 324, 384, 452, 530, 619, 720, 834, 964, 1109, 1273, 1456, 1661, 1890, 2145, 2428, 2743, 3091, 3477, 3902, 4371, 4887, 5454, 6076, 6758, 7503, 8319, 9208, 10178, 11234, 12382 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The Fibonacci sequence starts with two 1's, that are to be considered distinct (see illustration). LINKS Paul Tek, Table of n, a(n) for n = 1..10000 Paul Tek, illustration of the first terms EXAMPLE The first (positive) Fibonacci numbers are: 1, 1, 2, 3, 5, 8... The number 5 can be partitioned into: - 1 consecutive initial Fibonacci number in 1 way: 5*1, - 2 consecutive initial Fibonacci numbers in 4 ways: 4*1 + 1*1, 3*1 + 2*1, 2*1 + 3*1, 1*1 + 4*1, - 3 consecutive initial Fibonacci numbers in 2 way: 2*1 + 1*1 + 1*2, 1*1 + 2*1 + 1*2. Hence, a(5) = 1+4+2 = 7. MAPLE with(combinat): b:= proc(n, i) option remember; local f; f:= fibonacci(i); `if`(n=0 or i=1, 1, `if`(i<1 , 0, `if`(i=2, n+1, b(n, i-1)+`if`(f>n, 0, b(n-f, i))))) end: a:= proc(n) local i, m, s; m, s:= n, 0; for i do m:= m-fibonacci(i); if m<0 then break fi; s:= s+ b(m, i) od; s end: seq(a(n), n=1..100); # Alois P. Heinz, Apr 29 2013 MATHEMATICA b[n_, i_] := b[n, i] = Module[{f = Fibonacci[i]}, If[n==0 || i==1, 1, If[i < 1, 0, If[i==2, n + 1, b[n, i - 1] + If[f>n, 0, b[n - f, i]]]]]]; a[n_] := Module[{i, m = n, s = 0}, 0; For[i = 1, True, i++, m = m - Fibonacci[i]; If[m<0, Break[]]; s = s + b[m, i]]; s]; Array[a, 100] (* Jean-François Alcover, Nov 20 2020, after Alois P. Heinz *) PROG (PARI) a(n) = { my(s=0, P=1, k=1, x='x); while(P!=0, s=s+polcoeff(P, n); P=(P*sum(z=1, n/fibonacci(k), x^(fibonacci(k)*z)))+O(x^(n+1)); k=k+1 ); return(s); } /* Paul Tek, Apr 28 2013 */ CROSSREFS Cf. A000045 (Fibonacci numbers). Cf. A000009. Sequence in context: A304712 A175842 A008581 * A036469 A238658 A116480 Adjacent sequences: A172488 A172489 A172490 * A172492 A172493 A172494 KEYWORD nonn AUTHOR Frank Schwellinger (nummer_eins(AT)web.de), Feb 05 2010 EXTENSIONS Corrected and extended by Paul Tek, Apr 28 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 23:50 EDT 2024. Contains 372782 sequences. (Running on oeis4.)