login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172488
Primes of the form 2^i * 3^j + 1 with i + j = 13
0
12289, 18433, 139969, 209953, 472393
OFFSET
1,1
COMMENTS
Note that bases 2 = prime(1), 3 = prime(2)
13 = prime(prime(1) * prime(2))
A finite "FUN" sequence with 5 = prime(3) terms
REFERENCES
E. I. Ignatjew, Mathematische Spielereien, Urania Verlag Leipzig/Jena/Berlin 1982
Helmut Kracke, Mathe-musische Knobelisken, Duemmler Bonn, 2. Auflage 1983
EXAMPLE
12289 = 2^12 * 3^1 + 1 = prime(1470) = prime(2 * 3 * 5 * 7^2)
18433 = 2^11 * 3^2 + 1 = prime(2111), index is prime(318)
139969 = 2^6 * 3^7 + 1 = prime(13006), larger of a Prime Twin Couple: PTC(1608)
209953 = 2^5 * 3^8 + 1 = prime(18802)
472393 = 2^3 * 3^10 + 1 = prime(39420)
CROSSREFS
KEYWORD
fini,full,nonn
AUTHOR
Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Feb 05 2010
STATUS
approved