The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A172490 Primes p of the form 4m+3 for which there are exactly as many primitive roots modulo p in the interval [0,p/2] as in the interval [p/2,p]. 2
7, 31, 43, 67, 307, 367, 487, 643, 1327, 1663, 2371, 3643, 3847, 4327, 4951, 6091, 6571, 8263, 9151, 9187, 11239, 11383, 11863, 15307, 24007, 24151, 27847, 30091, 30643, 33619, 36871, 42187, 44171, 46279, 46591, 48787, 70843, 71887, 72103, 72379, 73363, 79867, 82003, 92503, 95467, 106243, 110431, 120943, 126031, 130363, 139759, 143827, 162751, 167107, 173191, 174859, 183247 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Primes 4*k+3 where half of the primitive roots are <= (p-1)/2.
The sequence is probably infinite.
Primes of the form 4m+1 always have as many primitive roots in [0,p/2] as in [p/2,p] (see A172480).
LINKS
MAPLE
with(numtheory): p:=3: while p<1000 do if(p mod 4 = 3)then b1:=0: b2:=0: m:=primroot(p): while not m=FAIL do if(m<p/2)then b1:=b1+1: else b2:=b2+1: fi: m:=primroot(m, p): od: if(b1=b2)then printf("%d, ", p): fi: fi: p:=nextprime(p): od: # Nathaniel Johnston, Jun 26 2011
MATHEMATICA
<< NumberTheory`NumberTheoryFunctions` m = 2; s = {}; While[m < 10000, m++; p = Prime[m]; If[Mod[p, 4] == 1, , q = (p - 1)/2; g = PrimitiveRoot[p]; se = Select[Range[p - 1], GCD[ #, p - 1] == 1 &]; e = Length[se]; j = 0; t = 0; While[j < e, j++; h = PowerMod[g, se[[j]], p]; If[h <= q, t = t + 1, ] ]; If[e == 2t, s = {s, p}, ] ] ]; s = Flatten[s]
PROG
(PARI) isA172490(p)=isprime(p)&&p%4==3&&sum(n=0, p\2, gcd(n, p)==1&&znorder(Mod(n, p))==p-1)==sum(n=p-p\2, p, gcd(n, p)==1&&znorder(Mod(n, p))==p-1) \\ Charles R Greathouse IV, Jun 27 2011
CROSSREFS
Sequence in context: A128028 A000921 A185004 * A349666 A298039 A135659
KEYWORD
hard,nonn
AUTHOR
Emmanuel Vantieghem, Feb 05 2010
EXTENSIONS
More terms from Robert Israel, Nov 23 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 00:29 EDT 2024. Contains 372921 sequences. (Running on oeis4.)