login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A185004 Ramanujan modulo primes R_(3,1)(n): a(n) is the smallest number such that if x >= a(n), then pi_(3,1)(x) - pi_(3,1)(x/2) >= n, where pi_(3,1)(x) is the number of primes==1 (mod 3) <= x. 5
7, 31, 43, 67, 97, 103, 151, 163, 181, 223, 229, 271, 331, 337, 367, 373, 409, 433, 487, 499, 571, 577, 601, 607, 631, 643, 709, 727, 751, 769, 823, 853, 883, 937, 991, 1009, 1021, 1033, 1051, 1063, 1087, 1117, 1123, 1231, 1291, 1297, 1303 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

All terms are primes==1 (mod 3).

A modular generalization of Ramanujan numbers, see Section 6 of the Shevelev-Greathouse-Moses paper.

We conjecture that for all n >= 1 a(n) <= A104272(3*n). This conjecture is based on observation that, if interval (x/2, x] contains >= 3*n primes, then at least n of them are of the form 3*k+1.

The function pi_(3,1)(n) starts 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3,... with records occurring as specified in A123365/A002476. - R. J. Mathar, Jan 10 2013

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Vladimir Shevelev, Charles R. Greathouse IV, Peter J. C. Moses, On intervals (kn, (k+1)n) containing a prime for all n>1, Journal of Integer Sequences, Vol. 16 (2013), Article 13.7.3. arXiv:1212.2785

FORMULA

lim(a(n)/prime(4*n)) = 1 as n tends to infinity.

MAPLE

pimod := proc(m, n, x)

    option remember;

    a := 0 ;

    for k from n to x by m do

        if isprime(k) then

            a := a+1 ;

        end if;

    end do:

    a ;

end proc:

a := [seq(0, n=1..100)] ;

for x from 1 do

    pdiff := pimod(3, 1, x)-pimod(3, 1, x/2) ;

    if pdiff+1 <= nops(a) then

        v := x+1 ;

        n := pdiff+1 ;

        if n<v then

            a := subsop(n=v, a) ;

            print(a) ;

        end if;

    end if;

end do: # R. J. Mathar, Jan 10 2013

MATHEMATICA

max = 100; pimod[m_, n_, x_] := pimod[m, n, x] = Module[{a = 0}, For[k = n, k <= x, k = k + m, If[PrimeQ[k], a = a + 1]]; a]; a[_] = 0; For[x = 1, x <= max^2, x++, pdiff = pimod[3, 1, x] - pimod[3, 1, x/2]; If[ pdiff + 1 <= max, v = x + 1; n = pdiff + 1; If[ n < v , a[n] = v ] ] ]; Table[a[n], {n, 1, max}] (* Jean-Fran├žois Alcover, Jan 28 2013, translated and adapted from R. J. Mathar's Maple program *)

CROSSREFS

Cf. A104272, A185005, A185006, A185007.

Sequence in context: A171733 A128028 A000921 * A172490 A298039 A135659

Adjacent sequences:  A185001 A185002 A185003 * A185005 A185006 A185007

KEYWORD

nonn

AUTHOR

Vladimir Shevelev and Peter J. C. Moses, Dec 18 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 05:41 EDT 2021. Contains 345080 sequences. (Running on oeis4.)