login
A123365
Values of k such that A046530(k) = (k+2)/3, where A046530(k) is the number of distinct residues of cubes mod k.
2
1, 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 307, 313, 331, 337, 349, 367, 373, 379, 397, 409, 421, 433, 439, 457, 463, 487, 499, 523, 541, 547, 571, 577, 601, 607, 613, 619
OFFSET
1,2
COMMENTS
Conjecture: With the exception of the first term a(1)=1, this is exactly the sequence of primes of the form 6k+1 (A002476). This has been verified up to a(n)=2000.
LINKS
MAPLE
n := 1 :
a := 1 :
while n <= 10000 do
printf("%d %d\n", n, a) ;
a := a+1 ;
while A046530(a) <> (a+2)/3 do
a := a+1 ;
end do:
n := n+1 ;
end do: # creates b-file, R. J. Mathar, Sep 21 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
John W. Layman, Oct 12 2006
STATUS
approved