login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123362
a(0) = 1, a(1) = 1, a(n) = 6*a(n-1) + 5*a(n-2) for n > 1.
3
1, 1, 11, 71, 481, 3241, 21851, 147311, 993121, 6695281, 45137291, 304300151, 2051487361, 13830424921, 93239986331, 628592042591, 4237752187201, 28569473336161, 192605600952971, 1298480972398631, 8753913839156641
OFFSET
0,3
COMMENTS
Hankel transform is [1, 10, 0, 0, 0, 0, 0, 0, 0, 0, ...]. - Philippe Deléham, Dec 04 2008
LINKS
Lucyna Trojnar-Spelina, Iwona Włoch, On Generalized Pell and Pell-Lucas Numbers, Iranian Journal of Science and Technology, Transactions A: Science (2019), 1-7.
FORMULA
a(n) = Sum_{k = 0..n} 5^(n - k)*A122542(n, k).
G.f.: (1 - 5*x)/(1 - 6*x - 5*x^2).
MATHEMATICA
LinearRecurrence[{6, 5}, {1, 1}, 50] (* G. C. Greubel, Oct 12 2017 *)
PROG
(PARI) x='x+O('x^50); Vec((1-5*x)/(1 - 6*x - 5*x^2)) \\ G. C. Greubel, Oct 12 2017
CROSSREFS
Sequence in context: A164559 A319535 A300541 * A199488 A068847 A139185
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Oct 12 2006
STATUS
approved