The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A319535 Primes of the form 2*6^k - 1. 1
 11, 71, 431, 2591, 15551, 4353564671, 5642219814911, 341163456359156416511, 2046980738154938499071, 20628849596981071092343898111, 26734989077687468135677691953151, 207891275068097752223029732627709951, 269427092488254686881046533485512097791 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Primes in A164559. Companion sequence of A057472. There are 49 terms known in this sequence. LINKS K. D. Bajpai, Table of n, a(n) for n = 1..26 FORMULA a(n) = 2*6^A057472(n) - 1. EXAMPLE 2*6^1 - 1 = 11, 2*6^2 - 1 = 71, 2*6^3 - 1 = 431, 2*6^4 - 1 = 2591 and 2*6^5 - 1 = 15551 are primes, but 2*6^6 - 1 = 93311 = 23*4057 is not. MAPLE A319535:= n-> (2*6^n-1): select(isprime, [seq((A319535(n), n=1..200))]); # K. D. Bajpai, Nov 15 2019 MATHEMATICA Select[Table[2*6^k-1, {k, 1600}], PrimeQ[#]&] (* K. D. Bajpai, Nov 15 2019 *) PROG (PARI) for(n=1, 99, my(t); if(ispseudoprime(t=2*6^n-1), print1(t", "))) (Magma) [k: n in [1..100] | IsPrime(k) where k is 2*6^n-1]; // K. D. Bajpai, Nov 15 2019 CROSSREFS Integers k such that 2*b^k - 1 is prime: A090748 (b=2), A003307 (b=3), A120375 (b=5), A057472 (b=6), A002959 (b=7), A002957 (b=10), A120378 (b=11). Primes of the form 2*b^k - 1: A000668 (b=2), A079363 (b=3), A120376 (b=5), this sequence (b=6), A158795 (b=7), A055558 (b=10), A120377 (b=11). Cf. also A000043, A002958, A068231, A164559. Sequence in context: A211386 A049350 A164559 * A300541 A123362 A199488 Adjacent sequences: A319532 A319533 A319534 * A319536 A319537 A319538 KEYWORD nonn AUTHOR Jianing Song, Sep 22 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 22 11:56 EDT 2024. Contains 373570 sequences. (Running on oeis4.)