login
A319535
Primes of the form 2*6^k - 1.
1
11, 71, 431, 2591, 15551, 4353564671, 5642219814911, 341163456359156416511, 2046980738154938499071, 20628849596981071092343898111, 26734989077687468135677691953151, 207891275068097752223029732627709951, 269427092488254686881046533485512097791
OFFSET
1,1
COMMENTS
Primes in A164559.
Companion sequence of A057472. There are 49 terms known in this sequence.
LINKS
FORMULA
a(n) = 2*6^A057472(n) - 1.
EXAMPLE
2*6^1 - 1 = 11, 2*6^2 - 1 = 71, 2*6^3 - 1 = 431, 2*6^4 - 1 = 2591 and 2*6^5 - 1 = 15551 are primes, but 2*6^6 - 1 = 93311 = 23*4057 is not.
MAPLE
A319535:= n-> (2*6^n-1): select(isprime, [seq((A319535(n), n=1..200))]); # K. D. Bajpai, Nov 15 2019
MATHEMATICA
Select[Table[2*6^k-1, {k, 1600}], PrimeQ[#]&] (* K. D. Bajpai, Nov 15 2019 *)
PROG
(PARI) for(n=1, 99, my(t); if(ispseudoprime(t=2*6^n-1), print1(t", ")))
(Magma) [k: n in [1..100] | IsPrime(k) where k is 2*6^n-1]; // K. D. Bajpai, Nov 15 2019
CROSSREFS
Integers k such that 2*b^k - 1 is prime: A090748 (b=2), A003307 (b=3), A120375 (b=5), A057472 (b=6), A002959 (b=7), A002957 (b=10), A120378 (b=11).
Primes of the form 2*b^k - 1: A000668 (b=2), A079363 (b=3), A120376 (b=5), this sequence (b=6), A158795 (b=7), A055558 (b=10), A120377 (b=11).
Sequence in context: A211386 A049350 A164559 * A300541 A123362 A199488
KEYWORD
nonn
AUTHOR
Jianing Song, Sep 22 2018
STATUS
approved