login
A319532
The 10-adic integer y = ...2759070000002 satisfying y^7 + 1 = z, z^7 + 1 = w, w^7 + 1 = x, and x^7 + 1 = y.
4
2, 0, 0, 0, 0, 0, 0, 7, 0, 9, 5, 7, 2, 4, 6, 4, 5, 5, 7, 7, 4, 7, 4, 7, 8, 8, 2, 3, 7, 8, 2, 5, 9, 2, 0, 2, 5, 9, 5, 4, 7, 8, 0, 7, 5, 2, 2, 1, 5, 5, 6, 8, 6, 4, 8, 4, 0, 9, 5, 1, 0, 5, 1, 4, 6, 5, 3, 8, 5, 0, 8, 4, 8, 2, 1, 3, 6, 1, 7, 9, 5, 6, 3, 2, 7, 3, 9, 1, 7, 0, 1, 5, 6, 9, 2, 6, 3, 0, 5, 5, 8
OFFSET
0,1
LINKS
EXAMPLE
2759070000002^7 + 1 == 6063360000129 (mod 10^13),
6063360000129^7 + 1 == 6485222491010 (mod 10^13),
6485222491010^7 + 1 == 7537010000001 (mod 10^13),
7537010000001^7 + 1 == 2759070000002 (mod 10^13).
CROSSREFS
Cf. A319530 (w), A319531 (x), A319533 (z).
Sequence in context: A083935 A053201 A028605 * A317576 A070205 A138363
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Sep 22 2018
STATUS
approved