login
A319260
The 10-adic integer w = ...72890754 satisfying w^7 + 1 = x, x^7 + 1 = y, y^7 + 1 = z, and z^7 + 1 = w.
8
4, 5, 7, 0, 9, 8, 2, 7, 0, 9, 6, 1, 3, 3, 6, 6, 5, 0, 4, 5, 8, 7, 7, 2, 6, 6, 2, 1, 9, 1, 0, 9, 0, 4, 2, 0, 8, 5, 9, 5, 7, 6, 1, 0, 4, 5, 7, 5, 6, 3, 0, 8, 3, 7, 7, 9, 0, 9, 6, 8, 9, 6, 8, 6, 5, 2, 1, 4, 7, 2, 2, 4, 2, 5, 3, 3, 9, 4, 1, 2, 6, 3, 1, 7, 8, 7, 3, 0, 2, 9, 2, 3, 2, 6
OFFSET
0,1
COMMENTS
There is one other ring of four 10-adic integers satisfying the same conditions.
LINKS
EXAMPLE
72890754^7 + 1 == 9600385 (mod 10^8), 9600385^7 + 1 == 22890626 (mod 10^8), 22890626^7 + 1 == 57109377 (mod 10^8), and 57109377^7 + 1 == 72890754 (mod 10^8).
CROSSREFS
Cf. A319261 (x), A319262 (y), A319263 (z).
Sequence in context: A146968 A298982 A112247 * A237196 A322711 A057055
KEYWORD
nonn,base
AUTHOR
Patrick A. Thomas, Sep 16 2018
EXTENSIONS
Offset changed to 0 by Seiichi Manyama, Sep 21 2018
More terms from Seiichi Manyama, Sep 21 2018
STATUS
approved