login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319258
a(n) = 1 + 2*3 + 4 + 5*6 + 7 + 8*9 + 10 + 11*12 + ... + (up to n).
3
1, 3, 7, 11, 16, 41, 48, 56, 120, 130, 141, 262, 275, 289, 485, 501, 518, 807, 826, 846, 1246, 1268, 1291, 1820, 1845, 1871, 2547, 2575, 2604, 3445, 3476, 3508, 4532, 4566, 4601, 5826, 5863, 5901, 7345, 7385, 7426, 9107, 9150, 9194, 11130, 11176, 11223
OFFSET
1,2
FORMULA
a(n) = n*(1 + floor((n-2)/3) - floor(n/3)) + 3*floor(n/3)^2*(1 + floor(n/3)) + floor((n+2)/3)*(3*floor((n+2)/3) - 1)/2.
From Colin Barker, Sep 16 2018: (Start)
G.f.: x*(1 + 2*x + 4*x^2 + x^3 - x^4 + 13*x^5 - 2*x^6 - x^7 + x^8) / ((1 - x)^4*(1 + x + x^2)^3).
a(n) = a(n-1) + 3*a(n-3) - 3*a(n-4) - 3*a(n-6) + 3*a(n-7) + a(n-9) - a(n-10) for n>10.
(End)
EXAMPLE
a(1) = 1;
a(2) = 1 + 2 = 3;
a(3) = 1 + 2*3 = 7;
a(4) = 1 + 2*3 + 4 = 11;
a(5) = 1 + 2*3 + 4 + 5 = 16;
a(6) = 1 + 2*3 + 4 + 5*6 = 41;
a(7) = 1 + 2*3 + 4 + 5*6 + 7 = 48;
a(8) = 1 + 2*3 + 4 + 5*6 + 7 + 8 = 56;
a(9) = 1 + 2*3 + 4 + 5*6 + 7 + 8*9 = 120;
a(10) = 1 + 2*3 + 4 + 5*6 + 7 + 8*9 + 10 = 130;
a(11) = 1 + 2*3 + 4 + 5*6 + 7 + 8*9 + 10 + 11 = 141;
a(12) = 1 + 2*3 + 4 + 5*6 + 7 + 8*9 + 10 + 11*12 = 262; etc.
MATHEMATICA
Table[n (1 + Floor[(n - 2)/3] - Floor[n/3]) + 3 Floor[n/3]^2 (1 + Floor[n/3]) + Floor[(n + 2)/3] (3 Floor[(n + 2)/3] - 1)/2, {n, 50}]
PROG
(PARI) Vec(x*(1 + 2*x + 4*x^2 + x^3 - x^4 + 13*x^5 - 2*x^6 - x^7 + x^8) / ((1 - x)^4*(1 + x + x^2)^3) + O(x^40)) \\ Colin Barker, Sep 16 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Sep 16 2018
STATUS
approved