Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Sep 17 2018 08:32:32
%S 1,3,7,11,16,41,48,56,120,130,141,262,275,289,485,501,518,807,826,846,
%T 1246,1268,1291,1820,1845,1871,2547,2575,2604,3445,3476,3508,4532,
%U 4566,4601,5826,5863,5901,7345,7385,7426,9107,9150,9194,11130,11176,11223
%N a(n) = 1 + 2*3 + 4 + 5*6 + 7 + 8*9 + 10 + 11*12 + ... + (up to n).
%H Colin Barker, <a href="/A319258/b319258.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,3,-3,0,-3,3,0,1,-1).
%F a(n) = n*(1 + floor((n-2)/3) - floor(n/3)) + 3*floor(n/3)^2*(1 + floor(n/3)) + floor((n+2)/3)*(3*floor((n+2)/3) - 1)/2.
%F From _Colin Barker_, Sep 16 2018: (Start)
%F G.f.: x*(1 + 2*x + 4*x^2 + x^3 - x^4 + 13*x^5 - 2*x^6 - x^7 + x^8) / ((1 - x)^4*(1 + x + x^2)^3).
%F a(n) = a(n-1) + 3*a(n-3) - 3*a(n-4) - 3*a(n-6) + 3*a(n-7) + a(n-9) - a(n-10) for n>10.
%F (End)
%e a(1) = 1;
%e a(2) = 1 + 2 = 3;
%e a(3) = 1 + 2*3 = 7;
%e a(4) = 1 + 2*3 + 4 = 11;
%e a(5) = 1 + 2*3 + 4 + 5 = 16;
%e a(6) = 1 + 2*3 + 4 + 5*6 = 41;
%e a(7) = 1 + 2*3 + 4 + 5*6 + 7 = 48;
%e a(8) = 1 + 2*3 + 4 + 5*6 + 7 + 8 = 56;
%e a(9) = 1 + 2*3 + 4 + 5*6 + 7 + 8*9 = 120;
%e a(10) = 1 + 2*3 + 4 + 5*6 + 7 + 8*9 + 10 = 130;
%e a(11) = 1 + 2*3 + 4 + 5*6 + 7 + 8*9 + 10 + 11 = 141;
%e a(12) = 1 + 2*3 + 4 + 5*6 + 7 + 8*9 + 10 + 11*12 = 262; etc.
%t Table[n (1 + Floor[(n - 2)/3] - Floor[n/3]) + 3 Floor[n/3]^2 (1 + Floor[n/3]) + Floor[(n + 2)/3] (3 Floor[(n + 2)/3] - 1)/2, {n, 50}]
%o (PARI) Vec(x*(1 + 2*x + 4*x^2 + x^3 - x^4 + 13*x^5 - 2*x^6 - x^7 + x^8) / ((1 - x)^4*(1 + x + x^2)^3) + O(x^40)) \\ _Colin Barker_, Sep 16 2018
%Y Cf. A093361, A228958, A305189, A319014.
%K nonn,easy
%O 1,2
%A _Wesley Ivan Hurt_, Sep 16 2018