login
The 10-adic integer y = ...2759070000002 satisfying y^7 + 1 = z, z^7 + 1 = w, w^7 + 1 = x, and x^7 + 1 = y.
4

%I #13 Sep 24 2018 10:49:12

%S 2,0,0,0,0,0,0,7,0,9,5,7,2,4,6,4,5,5,7,7,4,7,4,7,8,8,2,3,7,8,2,5,9,2,

%T 0,2,5,9,5,4,7,8,0,7,5,2,2,1,5,5,6,8,6,4,8,4,0,9,5,1,0,5,1,4,6,5,3,8,

%U 5,0,8,4,8,2,1,3,6,1,7,9,5,6,3,2,7,3,9,1,7,0,1,5,6,9,2,6,3,0,5,5,8

%N The 10-adic integer y = ...2759070000002 satisfying y^7 + 1 = z, z^7 + 1 = w, w^7 + 1 = x, and x^7 + 1 = y.

%H Seiichi Manyama, <a href="/A319532/b319532.txt">Table of n, a(n) for n = 0..5000</a>

%e 2759070000002^7 + 1 == 6063360000129 (mod 10^13),

%e 6063360000129^7 + 1 == 6485222491010 (mod 10^13),

%e 6485222491010^7 + 1 == 7537010000001 (mod 10^13),

%e 7537010000001^7 + 1 == 2759070000002 (mod 10^13).

%Y Cf. A319530 (w), A319531 (x), A319533 (z).

%Y Cf. A319260, A319261, A319262, A319263.

%K nonn,base

%O 0,1

%A _Seiichi Manyama_, Sep 22 2018