login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053201
Pascal's triangle (excluding first, last element of each row) read by rows, row n read mod n.
7
0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 3, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 6, 0, 4, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 5, 0, 0, 2, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 4, 3, 0, 0, 0, 3, 4, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 7, 0, 7, 2, 7, 0, 7, 0, 7, 0, 0, 0, 5, 0, 3, 10, 0, 0, 10, 3, 0, 5, 0
OFFSET
2,5
COMMENTS
Prime numbered rows contain all zeros.
FORMULA
T(n,k) = A014410(n,k) mod n, k=1..n-1.
EXAMPLE
0; 0,0; 0,2,0; 0,0,0,0; 0,3,2,3,0; ...
row 6 = 6 mod 6, 15 mod 6, 20 mod 6, 15 mod 6, 6 mod 6 = 0, 3, 2, 3, 0
MATHEMATICA
row[n_] := Table[ Mod[ Binomial[n, k], n], {k, 1, n-1}]; Table[row[n], {n, 2, 15}] // Flatten (* Jean-François Alcover, Aug 12 2013 *)
PROG
(Haskell)
a053201 n k = a053201_tabl !! (n-2) !! (k-1)
a053201_row n = a053201_tabl !! (n-2)
a053201_tabl = zipWith (map . (flip mod)) [2..] a014410_tabl
-- Reinhard Zumkeller, Aug 17 2013
CROSSREFS
Row sums give A053205. Cf. A053200, A053202, A053203, A007318 (Pascal's triangle)
Cf. A053214 (central terms).
Sequence in context: A280843 A221146 A083935 * A028605 A319532 A317576
KEYWORD
nonn,nice,tabl,look
AUTHOR
Asher Auel, Dec 12 1999
EXTENSIONS
a(62) and a(68) corrected by T. D. Noe, Feb 08 2008
STATUS
approved