

A053202


Pascal's triangle (excluding first, last two elements of each row) read by rows, row n read mod n.


5



2, 0, 0, 3, 2, 3, 0, 0, 0, 0, 4, 0, 6, 0, 4, 0, 3, 0, 0, 3, 0, 5, 0, 0, 2, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 6, 4, 3, 0, 0, 0, 3, 4, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 7, 0, 7, 2, 7, 0, 7, 0, 7, 0, 5, 0, 3, 10, 0, 0, 10, 3, 0, 5, 0, 8, 0, 12, 0, 8, 0, 6, 0, 8, 0, 12, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

4,1


COMMENTS

Prime numbered rows contain all zeros.


LINKS

T. D. Noe, Rows n=4..100 of triangle, flattened


EXAMPLE

Triangle begins:
2;
0,0;
3,2,3;
0,0,0,0;
4,0,6,0,4;
...
row 8 = 28 mod 8, 56 mod 8, 70 mod 8, 56 mod 8, 28 mod 8 = 4, 0, 6, 0, 4.


MATHEMATICA

Table[Mod[Binomial[n, k], n], {n, 4, 18}, {k, 2, n2}] // Flatten (* JeanFrançois Alcover, Jun 06 2017 *)


PROG

(Haskell)
a053202 n k = a053202_tabl !! (n  4) !! k
a053202_row n = a053202_tabl !! (n  4)
a053202_tabl = zipWith (\k row > take (k  3) $ drop 2 row)
[4..] $ drop 4 a053200_tabl
 Reinhard Zumkeller, Jan 24 2014


CROSSREFS

Sum of row n = A053205(n). Cf. A053200, A053201, A053203, A007318 (Pascal's triangle).
Sequence in context: A341410 A205341 A195664 * A188122 A341841 A050186
Adjacent sequences: A053199 A053200 A053201 * A053203 A053204 A053205


KEYWORD

nonn,nice,tabl


AUTHOR

Asher Auel (asher.auel(AT)reed.edu), Dec 12 1999


EXTENSIONS

a(44) corrected by T. D. Noe, Feb 08 2008


STATUS

approved



