login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A205341 T(n,k)=Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than k 10
0, 0, 1, 0, 2, 0, 0, 3, 2, 2, 0, 4, 6, 11, 0, 0, 5, 12, 35, 24, 5, 0, 6, 20, 82, 138, 93, 0, 0, 7, 30, 160, 454, 689, 272, 14, 0, 8, 42, 277, 1130, 2912, 3272, 971, 0, 0, 9, 56, 441, 2370, 8927, 18652, 16522, 3194, 42, 0, 10, 72, 660, 4424, 22297, 71630, 124299, 83792, 11293, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Table starts

..0...0.....0......0......0.......0.......0........0........0........0

..1...2.....3......4......5.......6.......7........8........9.......10

..0...2.....6.....12.....20......30......42.......56.......72.......90

..2..11....35.....82....160.....277.....441......660......942.....1295

..0..24...138....454...1130....2370....4424.....7588....12204....18660

..5..93...689...2912...8927...22297...48335....94456...170529...289229

..0.272..3272..18652..71630..214724..542850..1211784..2459988..4633800

.14.971.16522.124299.594405.2133784.6285127.16018970.36557640.76469705

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..9999

FORMULA

Empirical for row n:

n=2: T(2,k) = k

n=3: T(3,k) = k^2 - k

n=4: T(4,k) = (4/3)*k^3 - (1/2)*k^2 + (7/6)*k

n=5: T(5,k) = (23/12)*k^4 - (1/2)*k^3 + (1/12)*k^2 - (3/2)*k

n=6: T(6,k) = (44/15)*k^5 - (5/12)*k^4 + (5/12)*k^2 + (31/15)*k

n=7: T(7,k) = (841/180)*k^6 - (1/3)*k^5 - (19/36)*k^4 + (1/3)*k^3 - (103/90)*k^2 - 3*k

T(n,m) = 1/n*Sum_{i=1..n} (Sum_{,l,0,i} (binomial(i,l)*(-1)^l *Sum_{j=0..(i-l)* m/(2*m+1)}((-1)^j*binomial(i-l,j)*binomial((-l-2*j+i)*m-l-j+i-1,(-l-2*j+i)*m-j)))*T(n-i,m)), T(0,m)=1. - Vladimir Kruchinin, Apr 07 2017

EXAMPLE

Some solutions for n=5, k=3:

..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0

..2....2....2....2....3....2....1....2....2....2....2....2....1....3....2....3

..4....5....4....0....2....4....4....4....1....4....3....1....2....5....5....5

..6....4....3....1....4....1....2....2....0....1....0....2....4....4....4....4

..3....3....2....3....1....2....1....3....3....3....2....3....2....2....2....1

..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0

MATHEMATICA

T[n_, m_] := T[n, m] = If[n == 0, 1, 1/(n)*Sum[Sum[Binomial[i, l]*(-1)^l* Sum[(-1)^j*Binomial[i-l, j]*Binomial[(-l - 2*j + i)*m - l - j + i - 1, (-l - 2*j + i)*m-j], {j, 0, (i-l)*m/(2*m+1)}], {l, 0, i}]*T[n-i, m], {i, 1, n}]];

Table[T[n-m+1, m], {n, 1, 11}, {m, n, 1, -1}] // Flatten (* Jean-François Alcover, Sep 24 2019, after Vladimir Kruchinin *)

PROG

(Maxima)

T(n, m):=if n=0 then 1 else 1/(n)*sum(sum(binomial(i, l)*(-1)^l*sum((-1)^j*binomial(i-l, j)*binomial((-l-2*j+i)*m-l-j+i-1, (-l-2*j+i)*m-j), j, 0, (i-l)*m/(2*m+1)), l, 0, i)*T(n-i, m), i, 1, n); /* Vladimir Kruchinin, Apr 07 2017 */

CROSSREFS

Column 1 odd n is A000108((n+5)/2).

Column 2 is A187430.

Row 3 is A002378(n-1).

Sequence in context: A142886 A099026 A341410 * A195664 A053202 A188122

Adjacent sequences:  A205338 A205339 A205340 * A205342 A205343 A205344

KEYWORD

nonn,tabl,look

AUTHOR

R. H. Hardin, Jan 26 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 07:21 EST 2021. Contains 349627 sequences. (Running on oeis4.)