login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053203
Pascal's triangle (excluding first, last three elements of each row) read by rows, row n read mod n.
5
2, 0, 0, 0, 6, 0, 3, 0, 0, 3, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 4, 3, 0, 0, 0, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 7, 2, 7, 0, 7, 0, 5, 0, 3, 10, 0, 0, 10, 3, 0, 5, 0, 12, 0, 8, 0, 6, 0, 8, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 6, 0, 0, 2, 0, 0, 6, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
6,1
COMMENTS
Prime numbered rows contain all zeros.
EXAMPLE
Triangle begins:
2;
0,0;
0,6,0;
3,0,0,3;
0,0,2,0,0;
...
row 9 = 84 mod 9, 126 mod 9, 126 mod 9, 84 mod 9, = 3, 0, 0, 3.
MATHEMATICA
Table[Mod[Binomial[n, k], n], {n, 6, 20}, {k, 3, n-3}] // Flatten (* Jean-François Alcover, Jan 17 2014 *)
PROG
(Haskell)
a053203 n k = a053203_tabl !! (n - 6) !! k
a053203_row n = a053203_tabl !! (n - 6)
a053203_tabl = zipWith (\k row -> take (k - 5) $ drop 3 row)
[6..] $ drop 6 a053200_tabl
-- Reinhard Zumkeller, Jan 24 2014
CROSSREFS
Row sums give A053206.
Cf. A053200, A053201, A053203, A007318 (Pascal's triangle).
Sequence in context: A339016 A262679 A326390 * A158360 A309746 A094315
KEYWORD
nonn,nice,tabl
AUTHOR
Asher Auel, Dec 12 1999
EXTENSIONS
a(30) corrected by T. D. Noe, Feb 08 2008
STATUS
approved