login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326390
The number of ways of seating n people around a table for the second time so that k pairs are maintained. T(n,k) read by rows.
4
1, 0, 1, 0, 0, 2, 0, 0, 0, 6, 0, 0, 16, 0, 8, 10, 0, 50, 50, 0, 10, 36, 144, 180, 240, 108, 0, 12, 322, 980, 1568, 1274, 686, 196, 0, 14, 2832, 8704, 11840, 10240, 4832, 1536, 320, 0, 16, 27954, 81000, 108054, 85050, 43902, 13446, 2970, 486, 0, 18, 299260, 834800, 1071700, 828400, 416200, 141520, 31000, 5200, 700, 0, 20
OFFSET
0,6
COMMENTS
Definition requires "pairs" and for n=0 it is assumed that there is 1 way of seating 0 people around a table for the second time so that 0 pairs are maintained and 1 person forms only one pair with him/herself. Therefore T(0,0)=1, T(1,0)=0 and T(1,1)=1.
Sum of each row is equal to n!.
Weighted average of each row using k as weights converges to 2 for large n and is given with following formula: (Sum_{k} T(n,k)*k)/n! = 2/(n-1) + 2 (conjectured).
LINKS
Witold Tatkiewicz, Link for Java program
FORMULA
T(n,n) = 2*n for n > 2;
T(n,n-1) = 0 for n > 1;
T(n,n-2) = n^2*(n-3) for n > 3 (conjectured);
T(n,n-3) = (3/4)*n^4 + 6*n^3 + (2/3)*n^2 - 14*n + 6 for n > 4 (conjectured);
T(n,n-4) = (25/12)*n^5 + (73/6)*n^4 + (5/4)*n^3 - (253/6)*n^2 + (152/3)*n - 24 for n > 5 (conjectured);
T(n,n-5) = (52/15)*n^6 + (77/3)*n^5 + 14*n^4 - (194/3)*n^3 + (4628/15)*n^2 - 273*n + 130 for n > 5 (conjectured);
T(n,n-6) = (707/120)*n^7 + (2093/40)*n^6 + (2009/40)*n^5 - (245/8)*n^4 + (78269/60)*n^3 - (18477/10)*n^2 + (21294/10)*n - 684 for n > 6 (conjectured).
EXAMPLE
Assuming initial order was {1,2,3,4,5} (therefore 1 and 5 forms pair as first and last person are neighbors in case of round table) there are 5 sets of ways of seating them again so that 3 pairs are conserved: {1,2,3,5,4}, {2,3,4,1,5}, {3,4,5,2,1}, {4,5,1,3,2}, {5,1,2,4,3}. Since within each set we allow for rotation ({1,2,3,5,4} and {2,3,5,4,1} are different) and reflection ({1,2,3,5,4} and {4,5,3,2,1} are also different) the total number of ways is 5*2*5 and therefore T(5,3)=50.
Unfolded table with n individuals (rows) forming k pairs (columns):
0 1 2 3 4 5 6 7
0 1
1 0 1
2 0 0 2
3 0 0 0 6
4 0 0 16 0 8
5 10 0 50 50 0 10
6 36 144 180 240 108 0 12
7 322 980 1568 1274 686 196 0 14
PROG
(Java) See Links section
CROSSREFS
Cf. A089222 (column k=0).
Cf. A000142 sum of each row.
Cf. A326397 (disregards reflection symmetry), A326404 (disregards circular symmetry), A326411 (disregards both circular and reflection symmetry).
Sequence in context: A136572 A339016 A262679 * A053203 A158360 A309746
KEYWORD
nonn,tabl
AUTHOR
Witold Tatkiewicz, Jul 03 2019
STATUS
approved