login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A326393
Primes p for which sigma(p+1)/sigma(p) reaches a record value, where sigma(k) is the divisor sum function (A000203).
5
2, 3, 5, 11, 23, 47, 59, 167, 179, 239, 359, 719, 839, 1259, 3359, 5039, 10079, 35279, 37799, 55439, 110879, 166319, 665279, 831599, 1081079, 1441439, 6320159, 6486479, 12972959, 24504479, 61261199, 82162079, 136936799, 232792559, 410810399, 698377679, 735134399
OFFSET
1,1
COMMENTS
Garcia et al. proved that {sigma(p+1)/sigma(p) : p prime} is dense in [3/2, oo), and thus this sequence is infinite.
LINKS
Stephan Ramon Garcia, Florian Luca, Kye Shi, and Gabe Udell, Primitive root bias for twin primes II: Schinzel-type theorems for totient quotients and the sum-of-divisors function, arXiv:1906.05927 [math.NT], 2019.
EXAMPLE
The values of sigma(p+1)/sigma(p) for the first terms are 1.333... < 1.75 < 2 < 2.333... < 2.5 < ...
MATHEMATICA
s = {}; rm = 0; p = 2; Do[q = NextPrime[p]; r = DivisorSigma[1, p + 1]/DivisorSigma[1, p]; If[r > rm, rm = r; AppendTo[s, p]]; p = q, {10^3}]; s
CROSSREFS
Sequence in context: A237810 A073434 A109551 * A162278 A173927 A027763
KEYWORD
nonn
AUTHOR
Amiram Eldar, Sep 11 2019
STATUS
approved