login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326395
Expansion of Sum_{k>=1} x^(2*k) * (1 + x^k) / (1 - x^(3*k)).
2
0, 1, 1, 1, 1, 3, 0, 2, 2, 2, 1, 4, 0, 2, 3, 2, 1, 5, 0, 3, 2, 2, 1, 6, 1, 2, 3, 2, 1, 6, 0, 3, 3, 2, 2, 7, 0, 2, 2, 4, 1, 6, 0, 3, 5, 2, 1, 7, 0, 3, 3, 2, 1, 7, 2, 4, 2, 2, 1, 9, 0, 2, 4, 3, 2, 6, 0, 3, 3, 4, 1, 10, 0, 2, 4, 2, 2, 6, 0, 5, 4, 2, 1, 8, 2, 2, 3, 4, 1, 10
OFFSET
1,6
COMMENTS
Number of divisors of n that are not of the form 3*k + 1.
LINKS
FORMULA
a(n) = A000005(n) - A001817(n).
Sum_{k=1..n} a(k) ~ 2*n*log(n)/3 + c*n, where c = (5*gamma-2)/3 - gamma(1,3) = (5*A001620-2)/3 - A256425 = -0.382447... . - Amiram Eldar, Jan 14 2024
MAPLE
N:= 100: # for a(1) .. a(N)
S:= series(add(x^(2*k)*(1+x^k)/(1-x^(3*k)), k=1..N/2), x, N+1):
seq(coeff(S, x, i), i=1..N); # Robert Israel, Aug 27 2020
MATHEMATICA
nmax = 90; CoefficientList[Series[Sum[x^(2 k) (1 + x^k)/(1 - x^(3 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Table[DivisorSum[n, 1 &, !MemberQ[{1}, Mod[#, 3]] &], {n, 1, 90}]
PROG
(PARI) a(n) = {numdiv(n) - sumdiv(n, d, d%3==1)} \\ Andrew Howroyd, Sep 11 2019
CROSSREFS
Cf. A000005, A001817, A001822, A004611 (positions of 0's), A007494, A035191, A082050, A326394.
Sequence in context: A176314 A004587 A104609 * A290566 A285006 A369747
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 11 2019
STATUS
approved