OFFSET
1,1
COMMENTS
Garcia et al. proved that assuming Dickson's conjecture, {sigma(p+1)/sigma(p-1) : p and p+2 are prime} is dense in [0, oo), and thus this sequence is infinite.
LINKS
Stephan Ramon Garcia, Florian Luca, Kye Shi, Gabe Udell, Primitive root bias for twin primes II: Schinzel-type theorems for totient quotients and the sum-of-divisors function, arXiv:1906.05927 [math.NT], 2019.
Wikipedia, Dickson's conjecture.
EXAMPLE
The values of sigma(p+1)/sigma(p-1) for the first terms are 2.333... < 2.539... < 2.621... < 2.734... < 2.836...
MATHEMATICA
s = {}; rm = 0; p = 2; Do[q = NextPrime[p]; If[q - p != 2, p = q; Continue[]]; r = DivisorSigma[1, p + 1]/DivisorSigma[1, p - 1]; If[r > rm, rm = r; AppendTo[s, p]]; p = q, {10^6}]; s
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Sep 11 2019
EXTENSIONS
a(22)-a(28) from Giovanni Resta, Nov 01 2019
STATUS
approved