login
A326391
Lesser of twin primes p >= 3 for which sigma(p+1)/sigma(p-1) reaches record value, where sigma(n) is the divisor sum function (A000203).
1
3, 7559, 42839, 55439, 110879, 415799, 1713599, 1940399, 2489759, 6652799, 6846839, 15855839, 31600799, 85765679, 232792559, 845404559, 1470268799, 6299092799, 10708457759, 17459441999, 32125373279, 135019684799, 439977938399, 449755225919, 1799020903679, 2126560035599, 2835413380799, 6278415343199
OFFSET
1,1
COMMENTS
Garcia et al. proved that assuming Dickson's conjecture, {sigma(p+1)/sigma(p-1) : p and p+2 are prime} is dense in [0, oo), and thus this sequence is infinite.
LINKS
EXAMPLE
The values of sigma(p+1)/sigma(p-1) for the first terms are 2.333... < 2.539... < 2.621... < 2.734... < 2.836...
MATHEMATICA
s = {}; rm = 0; p = 2; Do[q = NextPrime[p]; If[q - p != 2, p = q; Continue[]]; r = DivisorSigma[1, p + 1]/DivisorSigma[1, p - 1]; If[r > rm, rm = r; AppendTo[s, p]]; p = q, {10^6}]; s
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Sep 11 2019
EXTENSIONS
a(22)-a(28) from Giovanni Resta, Nov 01 2019
STATUS
approved